首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   43篇
  国内免费   13篇
测绘学   1篇
大气科学   6篇
地球物理   166篇
地质学   30篇
海洋学   24篇
综合类   8篇
自然地理   63篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   14篇
  2020年   17篇
  2019年   13篇
  2018年   4篇
  2017年   19篇
  2016年   13篇
  2015年   9篇
  2014年   16篇
  2013年   23篇
  2012年   9篇
  2011年   12篇
  2010年   12篇
  2009年   17篇
  2008年   21篇
  2007年   22篇
  2006年   10篇
  2005年   6篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有298条查询结果,搜索用时 15 毫秒
1.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
2.
Natural riparian forest wetlands are known to be effective in their ability to remove nitrate by denitrification and sediments with attached phosphorus via sedimentation. On the other hand, litter input and decomposition is a process of crucial importance in cycling of nitrogen and phosphorus in a forest ecosystem.In this study we investigated the amount of nitrogen and phosphorus entering the alder fen ecosystem through leaf litter and its decomposition and the removal capacity of nitrogen and phosphorus by measuring denitrification and sedimentation in the alder fen.We found an average input of leaf litter during fall 1998 of 226 g m−2 yr−1 DW with nutrient concentration of 0.17% P and 1.6% N. This means a yearly input of 0.4 g m−2 yr−1 P and 3.6 g m−2 yr−1 N. The decomposition of leaf litter using litter bags with small and large mesh size resulted in bags with macroinvertebrates (large mesh size) and without macroinvertebrates (small mesh size). After 57 days the litter bags with macroinvertebrates had a decomposition rate of 79%.Denitrification was measured in May and June of 1997 using the acetylene inhibition technique on intact soil cores and slurry-experiments. The average annual denitrification rate was 0.2 g m−2 yr−1 N using data from the core experiments. The denitrification rate was higher after addition of nitrate, indicating that denitrification in the riparian alder fen is mainly controlled by nitrate supply.The sedimentation rate in the investigated alder fen ranged from 0.47 kg m−2 yr−1 DW to 4.46 kg m−2 yr−1 DW in 1998 depending on the study site and method we used. Sedimentation rates were lower in newly designed plate traps than in cylinder traps. The alder fen also showed lower rates than the adjacent creek Briese. Average phosphorus removal rate was 0.33 g m−2 yr−1 P.Input sources for the surface water of the alder fen are sediment mineralization and decomposition of leaf litter; output sources are sedimentation and denitrification. This study showed that a nutrient input of 24.58 kg ha−1 yr−1 N, 8.8 kg ha−1 yr−1 P and 419 kg ha−1 yr−1 DOC into the surface water of the alder fen is possible. Alder fens cannot improve water quality of an adjacent river system. This is only true for a nearly pristine alder fen with the hydrology of 10 months flooded conditions and 2 months non-flooding conditions a year.  相似文献   
3.
腾格里沙漠人工固沙植被区生物土壤结皮对降水的拦截作用   总被引:33,自引:16,他引:33  
在沙坡头人工植被区对人工模拟降水及天然降水后生物土壤结皮层含水率进行了动态定位监测,并分析了生物土壤结皮拦截降水的作用.结果表明:①生物土壤结皮的发育改变了原来沙丘剖面的水分分配格局,10%~40%的年降水量被拦截到结皮层;②随固沙年限的增加,生物土壤结皮的进一步发育和演变,其对降水的拦截能力也进一步提高;③生物土壤结皮对降水的拦截有明显的季节变化,7~10月份平均拦截雨量比4~6月份平均高出12%.  相似文献   
4.
Thirty‐six runoff plot experiments provide data on flow depths, speeds, and Darcy–Weisbach friction coefficients (f) on bare soil surfaces, and surfaces to which were added sufficient extra plant litter or surface stones to provide projected cover of 5, 10 and 20 per cent. Precision flow depth data were derived with a computer‐controlled gantry and needle gauge for two different discharges for each plot treatment. Taking a fixed flow intensity (Reynolds number, Re = 150) for purposes of comparison shows means of f = 17·7 for bare soil surfaces, f = 11·4 for added stone treatments, and f = 23·8 for added litter treatments. Many individual values of f for stone treatments are lower than for the bare soil surface, but all litter treatments show increases in fcompared to bare soil. The lowering of f in stone treatments relates to the submerged volume that the stones occupied, and the associated concentration of flow onto a smaller part of the plot surface. This leads to locally higher flow intensities and lower frictional drag along threads of flow that the obstacles create. Litter causes higher frictional drag because the particles are smaller, and, for the same cover fraction, are 100 times more numerous and provide 20 times the edge or perimeter length. Along these edges, which in total exceed 2·5 m g?1 (equivalent to 500 m m?2 for a loading of 2 t ha?1), surface tension draws up water from between the litter particles. This reduces flow depth there, and as a consequence of the lower flow intensity, frictional drag rises. Furthermore, no clear passage remains for the establishment of flow threads. These findings apply to shallow interrill flows in which litter is largely immobile. The key new result from these experiments is that under these conditions, a 20 per cent cover of organic litter can generate interrill frictional retardation that exceeds by nearly 41 per cent that of a bare soil surface, and twice that contributed by the same cover fraction of surface stones. Even greater dominance by litter can be anticipated at the many dryland sites where litter covers exceed those tested here. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
5.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   
6.
Canopy interception and its evaporation into the atmosphere during irrigation or a rainfall event are important in irrigation scheduling, but are challenging to estimate using conventional methods. This study introduces a new approach to estimate the canopy interception from measurements of actual total evapotranspiration (ET) using eddy covariance and estimation of the transpiration from measurements of sap flow. The measurements were conducted over a small‐scale sprinkler‐irrigated cotton field before, during and after sprinkler irrigation. Evaporation and sap flow dynamics during irrigation show that the total ET during irrigation increased significantly because of the evaporation of free intercepted water while transpiration was suppressed almost completely. The difference between actual ET and transpiration (sap flow) during and immediately following irrigation (post irrigation) represents the total canopy evaporation while the canopy interception capacity was calculated as the difference between actual ET and transpiration (sap flow) during drying (post irrigation) following cessation of the irrigation. The canopy evaporation of cotton canopy was calculated as 0.8 mm, and the interception capacity was estimated to be 0.31 mm of water. The measurement uncertainty in both the non‐dimensional ET and non‐dimensional sap flow was shown to be very low. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
张鹏  孙鸿儒  贾丙瑞 《冰川冻土》2021,43(6):1840-1847
森林凋落物的分解对于维持生态系统物质循环和养分平衡具有重要意义,并受到不同积雪厚度下冻融格局的影响。冻融期(包括冻结过程期、完全冻结期、融化过程期)是冻土区凋落物分解的重要时期,该时期分解的凋落物量约占全年分解总量的一半。积雪减少通常会导致土壤温度降低、冻融循环次数增加,进而影响凋落物分解。通过综述近10年来积雪变化对我国森林凋落物分解影响的研究成果发现,积雪厚度减少在冻融期通常会抑制凋落物质量损失、碳元素释放和纤维素降解,生长季则起到促进作用,从全年来看多数表现为抑制作用。因此,冻融作用造成凋落物的物理破坏,对其分解的促进作用主要发生在后续生长季。积雪厚度减少在冻融期通常抑制氮元素释放,生长季和全年则无明显规律;磷元素和木质素目前研究还存在很大差异。最后,进一步阐述了积雪变化对凋落物分解影响研究存在的问题及未来研究发展方向。  相似文献   
8.
土壤有机碳矿化是调控土壤碳库时空格局、土壤碳收支平衡和植物养分供应的重要过程,植物残体和凋落物分解释放CO2直接影响着土壤有机碳矿化。研究了不同类型凋落物对腾格里沙漠东南缘建植于1956年的人工固沙植被区土壤有机碳矿化过程及其对水分和温度的响应特征。结果表明:凋落物添加显著促进了有机碳矿化,添加柠条锦鸡儿(Caragana korshinskii)、油蒿(Artemisia ordosica)、小画眉草(Eragrostis minor)凋落物后,CO2-C最大矿化速率分别增大了6.94、5.17、3.46倍,0~5 cm层土壤是5~10 cm层土壤的1.09、1.55、1.22倍;CO2-C累积释放量分别增加了3.73、3.38、2.34倍,0~5 cm层土壤是5~10 cm层土壤的1.17、1.30、1.57倍。凋落物对有机碳矿化的促进作用与温度和水分密切相关,25℃时,CO2-C平均释放速率、最大释放速率、累积碳释放量分别是10℃的2.21、3.60、2.21倍,而含水量10%时,CO2-C平均释放速率、最大释放速率和累积碳释放量分别是含水量5%时的1.25、1.20、1.25倍。相关性分析表明,凋落物碳氮含量、碳氮比、木质素比氮和土壤有机碳以及全氮是影响有机碳矿化的主要因子。凋落添加土壤后潜在可矿化碳表现为柠条锦鸡儿>油蒿>小画眉草>对照。凋落物添加显著促进了有机碳矿化过程及碳周转,植被恢复过程中草本植物凋落物的输入更有利于土壤碳固存,凋落物对土壤碳库的调控作用受土壤理化性质和水热等环境因子的共同作用影响。  相似文献   
9.
Yang  Chongyao  Huang  Yongmei  Li  Engui  Li  Zeqing 《地理学报(英文版)》2019,29(9):1527-1547
Journal of Geographical Sciences - Rainfall interception is of great significance to the fully utilization of rainfall in water limited areas. Until now, studies on rainfall partitioning process of...  相似文献   
10.
Litter decomposition is the key process in nutrient recycling and energy flow. The present study examined the impacts of soil fauna on decomposition rates and nutrient fluxes at three succession stages of wetland in the Sanjiang Plain, China using different mesh litterbags. The results show that in each succession stage of wetland, soil fauna can obviously increase litter decomposition rates. The average contribution of whole soil fauna to litter mass loss was 35.35%. The more complex the soil fauna group, the more significant the role of soil fauna. The average loss of three types of litter in the 4mm mesh litterbags was 0.3–4.1 times that in 0.058mm ones. The decomposition function of soil fauna to litter mass changed with the wetland succession. The average contribution of soil fauna to litter loss firstly decreased from 34.96% (Carex lasiocapa) to 32.94% (Carex meyeriana), then increased to 38.16% (Calamagrostics angustifolia). The contributions of soil fauna to litter decomposition rates vary according to the litter substrata, soil fauna communities and seasons. Significant effects were respectively found in August and July on C. angustifolia and C. lasiocapa, while in June and August on C. meyeriana. Total carbon (TC), total nitrogen (TN) and total phosphorus (TP) contents and the C/N and C/P ratios of decaying litter can be influenced by soil fauna. At different wetland succession stages, the effects of soil fauna on nutrient elements also differ greatly, which shows the significant difference of influencing element types and degrees. Soil fauna communities strongly influenced the TC and TP concentrations of C. meyeriana litter, and TP content of C. lasiocapa. Our results indicate that soil fauna have important effects on litter decomposition and this influence will vary with the wetland succession and seasonal variation. Foundation item: Under the auspices of State Key Development Program for Basic Research of China (No. 2009CB421103), Key Program of National Natural Science Foundation of China (No. 40830535/D0101), Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-BR-16, KSCX2-YW-N-46-06)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号