首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   792篇
  免费   79篇
  国内免费   213篇
测绘学   83篇
大气科学   67篇
地球物理   137篇
地质学   488篇
海洋学   161篇
天文学   6篇
综合类   38篇
自然地理   104篇
  2024年   3篇
  2023年   4篇
  2022年   24篇
  2021年   24篇
  2020年   35篇
  2019年   31篇
  2018年   30篇
  2017年   18篇
  2016年   24篇
  2015年   34篇
  2014年   19篇
  2013年   52篇
  2012年   47篇
  2011年   28篇
  2010年   34篇
  2009年   45篇
  2008年   55篇
  2007年   77篇
  2006年   67篇
  2005年   54篇
  2004年   45篇
  2003年   27篇
  2002年   40篇
  2001年   27篇
  2000年   25篇
  1999年   23篇
  1998年   43篇
  1997年   25篇
  1996年   17篇
  1995年   20篇
  1994年   19篇
  1993年   13篇
  1992年   10篇
  1991年   11篇
  1990年   5篇
  1989年   7篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1972年   1篇
  1954年   1篇
排序方式: 共有1084条查询结果,搜索用时 15 毫秒
1.
 The Middle Jurassic Kirkpatrick flood basalts and comagmatic Ferrar intrusions in the Transantarctic Mountains represent a major pulse of tholeiitic magmatism related to early stages in the breakup of Gondwana. A record of the volcano-tectonic events leading to formation of this continental flood-basalt province is provided by strata underlying and only slightly predating the Kirkpatrick lavas. In the central Transantarctic Mountains, the lavas rest on widespread (≥7500 km2) tholeiitic pyroclastic deposits of the Prebble Formation. The Prebble Formation is dominated by lahar deposits and is an unusual example of a regionally developed basaltic lahar field. Related, partly fault-controlled pyroclastic intrusions cut underlying strata, and vents are represented by the preserved flanks of two small tephra cones associated with a volcanic neck. Lahar and air-fall deposits typically contain 50–60% accidental lithic fragments and sand grains derived from underlying Triassic – Lower Jurassic strata in the upper part of the Beacon Supergroup. Juvenile basaltic ash and fine lapilli consist of nonvesicular to scoriaceous tachylite, sideromelane, and palagonite, and have characteristics indicating derivation from hydrovolcanic eruptions. The abundance of accidental debris from underlying Beacon strata points to explosive phreatomagmatic interaction of basaltic magma with wet sediment and groundwater, which appears to have occurred in particular where rising magma intersected upper Beacon sand aquifers. Composite clasts in the lahar deposits exhibit complex peperitic textures formed during fine-scale intermixing of basaltic magma with wet sand and record steps in subsurface fuel-coolant interactions leading to explosive eruption. The widespread, sustained phreatomagmatic activity is inferred to have occurred in a groundwater-rich topographic basin linked to an evolving Jurassic rift zone in the Transantarctic Mountains. Coeval basaltic phreatomagmatic deposits of the Mawson and Exposure Hill Formations, which underlie exposures of the Kirkpatrick Basalt up to 1500 km to the north along strike in Victoria Land, appear to represent other parts of a regional, extension-related Middle Jurassic phreatomagmatic province which developed immediately prior to rapid outpouring of the flood basalts. This is consistent with models which assign an important role to lithospheric stretching in the generation of flood-basalt provinces. Received: 28 August 1995 / Accepted: 18 April 1996  相似文献   
2.
用遗传算法解算病态方程   总被引:7,自引:1,他引:6  
对应用遗传算法解决病态方程问题进行了探讨。利用拟合法而不是通过法方程求解参数,从而避免了法方程系数求逆,使病态方程的解答有了较好的结果。通过模拟计算并和其他方法进行比较,证明该方法是可行的和有效的。  相似文献   
3.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   
4.
The petrological parameters Na8 and Fe8, which are Na2O andFeO contents in mid-ocean ridge basalt (MORB) melts correctedfor fractionation effects to MgO = 8 wt%, have been widely usedas indicators of the extent and pressure of mantle melting beneathocean ridges. We find that these parameters are unreliable.Fe8 is used to compute the mantle solidus depth (Po) and temperature(To), and it is the values and range of Fe8 that have led tothe notion that mantle potential temperature variation of TP= 250 K is required to explain the global ocean ridge systematics.This interpreted TP = 250 K range applies to ocean ridges awayfrom ‘hotspots’. We find no convincing evidencethat calculated values for Po, To, and TP using Fe8 have anysignificance. We correct for fractionation effect to Mg# = 0·72,which reveals mostly signals of mantle processes because meltswith Mg# = 0·72 are in equilibrium with mantle olivineof Fo89·6 (vs evolved olivine of Fo88·1–79·6in equilibrium with melts of Fe8). To reveal first-order MORBchemical systematics as a function of ridge axial depth, weaverage out possible effects of spreading rate variation, local-scalemantle source heterogeneity, melting region geometry variation,and dynamic topography on regional and segment scales by usingactual sample depths, regardless of geographical location, withineach of 22 ridge depth intervals of 250 m on a global scale.These depth-interval averages give Fe72 = 7·5–8·5,which would give TP = 41 K (vs 250 K based on Fe8) beneathglobal ocean ridges. The lack of Fe72–Si72 and Si72–ridgedepth correlations provides no evidence that MORB melts preservepressure signatures as a function of ridge axial depth. We thusfind no convincing evidence for TP > 50 K beneath globalocean ridges. The averages have also revealed significantcorrelations of MORB chemistry (e.g. Ti72, Al72, Fe72,Mg72, Ca72, Na72 and Ca72/Al72) with ridge axial depth. Thechemistry–depth correlation points to an intrinsic linkbetween the two. That is, the 5 km global ridge axial reliefand MORB chemistry both result from a common cause: subsolidusmantle compositional variation (vs TP), which determines themineralogy, lithology and density variations that (1) isostaticallycompensate the 5 km ocean ridge relief and (2) determine thefirst-order MORB compositional variation on a global scale.A progressively more enriched (or less depleted) fertileperidotite source (i.e. high Al2O3 and Na2O, and low CaO/Al2O3)beneath deep ridges ensures a greater amount of modal garnet(high Al2O3) and higher jadeite/diopside ratios in clinopyroxene(high Na2O and Al2O3, and lower CaO), making a denser mantle,and thus deeper ridges. The dense fertile mantle beneath deepridges retards the rate and restricts the amplitude of the upwelling,reduces the rate and extent of decompression melting, givesway to conductive cooling to a deep level, forces melting tostop at such a deep level, leads to a short melting column,and thus produces less melt and probably a thin magmatic crustrelative to the less dense (more refractory) fertile mantlebeneath shallow ridges. Compositions of primitive MORB meltsresult from the combination of two different, but geneticallyrelated processes: (1) mantle source inheritance and (2) meltingprocess enhancement. The subsolidus mantle compositional variationneeded to explain MORB chemistry and ridge axial depth variationrequires a deep isostatic compensation depth, probably in thetransition zone. Therefore, although ocean ridges are of shalloworigin, their working is largely controlled by deep processesas well as the effect of plate spreading rate variation at shallowlevels. KEY WORDS: mid-ocean ridges; mantle melting; magma differentiation; petrogenesis; MORB chemistry variation; ridge depth variation; global correlations; mantle compositional variation; mantle source density variation; mantle potential temperature variation; isostatic compensation  相似文献   
5.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   
6.
The Agulhas Ridge is a prominent topographic feature that parallels the Agulhas-Falkland Fracture Zone (AFFZ). Seismic reflection and wide angle/refraction data have led to the classification of this feature as a transverse ridge. Changes in spreading rate and direction associated with ridge jumps, combined with asymmetric spreading within the Agulhas Basin, modified the stress field across the fracture zone. Moreover, passing the Agulhas Ridge’s location between 80 and 69 Ma, the Bouvet and Shona Hotspots may have supplied excess material to this part of the AFFZ thus altering the ridge’s structure. The low crustal velocities and overthickened crust of the northern Agulhas Ridge segment indicate a possible continental affinity that suggests it may be formed by a small continental sliver, which was severed off the Maurice Ewing Bank during the opening of the South Atlantic. In early Oligocene times the Agulhas Ridge was tectono-magmatically reactivated, as documented by the presence of basement highs disturbing and disrupting the sedimentary column in the Cape Basin. We consider the Discovery Hotspot, which distributes plume material southwards across the AAFZ, as a source for the magmatic material.  相似文献   
7.
This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific, the oceanic region centered on the eastern Pacific warm pool, but also including the equatorial cold tongue and equatorial current system, and summarizes what is known about oceanographic influences on seabirds and cetaceans there. The eastern tropical Pacific supports on the order of 50 species of seabirds and 30 species of cetaceans as regular residents; these include four endemic species, the world’s largest populations for several others, three endemic sub-species, and a multi-species community that is relatively unique to this ecosystem. Three of the meso-scale physical features of the region are particularly significant to seabirds and cetaceans: the Costa Rica Dome for blue whales and short-beaked common dolphins, the Equatorial Front for planktivorous seabirds, and the countercurrent thermocline ridge for flocking seabirds that associate with mixed-species schools of spotted and spinner dolphins and yellowfin tuna. A few qualitative studies of meso- to macro-scale distribution patterns have indicated that some seabirds and cetaceans have species-specific preferences for surface currents. More common are associations with distinct water masses; these relationships have been quantified for a number of species using several different analytical methods. The mechanisms underlying tropical species–habitat relationships are not well understood, in contrast to a number of higher-latitude systems. This may be due to the fact that physical variables have been used as proxies for prey abundance and distribution in species–habitat research in the eastern tropical Pacific.Though seasonal and interannual patterns tend to be complex, species–habitat relationships appear to remain relatively stable over time, and distribution patterns co-vary with patterns of preferred habitat for a number of species. The interactions between seasonal and interannual variation in oceanographic conditions with seasonal patterns in the biology of seabirds and cetaceans may account for some of the complexity in species–habitat relationship patterns.Little work has been done to investigate effects of El Niño-Southern Oscillation cycles on cetaceans, and results of the few studies focusing on oceanic seabirds are complex and not easy to interpret. Although much has been made of the detrimental effects of El Niño events on apex predators, more research is needed to understand the magnitude, and even direction, of these effects on seabirds and cetaceans in space and time.  相似文献   
8.
E.D. Zaron  G.D. Egbert   《Ocean Modelling》2007,18(3-4):210-216
We use a synthetic data experiment to assess the accuracy of ocean tides estimated from satellite altimetry data, with emphasis on the impact of the phase-locked internal tide, which has a surface expression of several centimeters near its sites of genesis. Previous tidal estimates have regarded this signal as a random measurement error; however, it is deterministic and not scale-separated from the barotropic (surface) tide around complex bathymetric features. The synthetic data experiments show that the internal tide has a negligible impact on the barotropic tidal fields inferred under these circumstances, and the barotropic dissipation (a quadratic functional of the tidal fields) is in good agreement with the energetics of the three-dimensional regional primitive equations model which is the source of the synthetic data.  相似文献   
9.
Transverse ridges are elongate reliefs running parallel and adjacent to transform/fracture zones offsetting mid-ocean ridges. A major transverse ridge runs adjacent to the Vema transform (Central Atlantic), that offsets the Mid-Atlantic Ridge by 320 km. Multibeam morphobathymetric coverage of the entire Vema Transverse ridge shows it is an elongated (300 km), narrow (<30 km at the base) relief that constitutes a topographic anomaly rising up to 4 km above the predicted thermal contraction level. Morphology and lithology suggest that the Vema Transverse ridge is an uplifted sliver of oceanic lithosphere. Topographic and lithological asymmetry indicate that the transverse ridge was formed by flexure of a lithospheric sliver, uncoupled on its northern side by the transform fault. The transverse ridge can be subdivided in segments bound by topographic discontinuities that are probably fault-controlled, suggesting some differential uplift and/or tilting of the different segments. Two of the segments are capped by shallow water carbonate platforms, that formed about 3–4 m.y. ago, at which time the crust of the transverse ridge was close to sea level. Sampling by submersible and dredging indicates that a relatively undisturbed section of oceanic lithosphere is exposed on the northern slope of the transverse ridge. Preliminary studies of mantle-derived ultramafic rocks from this section suggest temporal variations in mantle composition. An inactive fracture zone scarp (Lema fracture zone) was mapped south of the Vema Transverse ridge. Based on morphology, a fossil RTI was identified about 80 km west of the presently active RTI, suggesting that a ridge jump might have occurred about 2.2 m.a. Most probable causes for the formation of the Vema Transverse ridge are vertical motions of lithospheric slivers due to small changes in the direction of spreading of the plates bordering the Vema Fracture Zone.  相似文献   
10.
江苏岸外辐射沙脊群东沙稳定性研究   总被引:8,自引:0,他引:8  
陈君  王义刚  张忍顺  林祥 《海洋工程》2007,25(1):105-113
东沙是江苏岸外辐射沙脊群中的第二大沙洲,具有独特的地形地貌和水动力条件,对它进行稳定性研究为揭示整个辐射沙洲及其邻近岸滩的动态演变都非常有益。通过利用多年遥感卫片资料、1998年取得的现场水文泥沙观测资料和东沙滩面表层沉积物资料等,对东沙的地形地貌特征、沉积特征和东沙两侧潮汐通道的水流泥沙特征等进行了详细分析。研究结果表明,东沙的沙脊偏于西侧,西侧滩面较窄、高程较高且岸线较为顺直,东侧滩面较宽、高程较低且岸线较为破碎;西洋和陈家坞槽均处于冲刷状态,净输沙的主要方向为输向槽外或输向条子泥;东沙近三十年来面积有所缩小且有外围向中央收缩的趋势,尤其以向东、向南方向的迁移最为明显。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号