首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
地球物理   5篇
地质学   1篇
海洋学   3篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2007年   2篇
  2005年   2篇
  2000年   1篇
排序方式: 共有9条查询结果,搜索用时 296 毫秒
1
1.
Concern has been raised that the increased use of pesticides in intensive aquaculture practices may cause adverse sublethal effects to non-target aquatic species. Azamethiphos is an organophosphate (OP) pesticide used to combat sea lice infestations in farmed salmonids. Here, the sublethal impact on the blue mussel, Mytilus edulis, of short term exposure to azamethiphos was determined. The testing regime included biomarkers of exposure (acetylcholinesterase activity), cytotoxicity (neutral red retention), immune function (phagocytic index) and physiological condition (feeding rate). The distribution and sensitivity of M. edulis acetylcholinesterase to inhibition by azamethiphos was first determined, yielding IC(50) values of 0.736 and 1.30 mg l(-1) for gill and haemolymph, respectively. Exposure of mussels to 0.1 mg l(-1) azamethiphos for periods of up to 24h caused a significant reduction in acetylcholinesterase activity in both the haemolymph (P<0.0002) and the gill (P<0.002), alteration in cell viability (P<0.02) and decrease in phagocytic index (P<0.03). The feeding rate remained unaffected. The results support the hypothesis that, in addition to its neurotoxic effects, azamethiphos can modulate haemocyte function and immune defence in M. edulis at environmentally relevant concentrations after only a few hours.  相似文献   
2.
The mechanism of interaction between chlorpyrifos, an organophosphate insecticide, and methyl mercury was assessed utilizing the amphipod, Hyalella azteca. Previous studies have demonstrated that chlorpyrifos and methyl mercury interact additively with survival as the endpoint. In addition, exposure to chlorpyrifos and methyl mercury increased the accumulation and decreased the elimination of methyl mercury. To further examine the mechanism responsible for these interactions, the in vivo and in vitro inhibition of acetylcholinesterase enzyme activity was assessed following exposure to methyl mercury and chlorpyrifos. In vivo, methyl mercury antagonized the effects of chlorpyrifos on acetylcholinesterase inhibition. Additional studies demonstrated that methyl mercury did not affect the in vitro bioactivation of chlorpyrifos or the subsequent inhibition of acetylcholinesterase enzyme activity. Chemical-chemical interactions were examined utilizing chromatographic techniques and suggested the formation of a chlorpyrifos-methyl mercury complex. The formation of this complex may result in increased accumulation of methyl mercury, apparent additive toxicity, and protection against chlorpyrifos-mediated acetylcholinesterase inhibition.  相似文献   
3.
After the Hebei Spirit oil spill incident (7th December, 2007) in the west coast of Korea, contamination of biliary PAH metabolite and hepatic biomarkers in a pelagic and a benthic fish was monitored for 1 year. Concentrations of 16 PAHs and alkylated PAHs in fish muscle were highest (22.0 ng/g d.w. for 16 PAHs and 284 ng/g d.w. for alkylated PAHs) at 5 days after the spill and then decreased rapidly to background levels at 11 months after the spill. Fish from the oiled site had elevated biliary PAH metabolite concentrations immediately after the spill; these declined steadily in both species, but were still above reference site concentrations 2 months after the spill. Oiled-site fish showed hepatic CYP 1A induction whose trend closely followed those of biliary PAH metabolite concentrations, implying continuous exposure to PAHs. Brain acetylcholinesterase activity was not related to oil exposure.  相似文献   
4.
Cholinesterases (ChEs) have been characterized in marbled sole (Limanda yokohamae) for use as a possible biomarker of pollution exposure. In brain, ChEs existed almost exclusively (>95%) as acetylcholinesterase (AChE) whereas in muscle, about 20-30% of ChE activity was in the form of butyrylcholinesterase (BChE; pseudocholinesterase). Acetylthiocholine and butyrylthiocholine (identified in mammalian studies as diagnostic substrates for AChE and BChE respectively) were hydrolyzed mainly, but not exclusively, by these enzymes. The inhibitors BW284C51 and iso-OMPA (identified in mammalian studies as diagnostic inhibitors of AChE and BChE respectively) were not specific for these enzymes in marbled sole. Brain AChE and muscle AChE and BChE were characterized in terms of their kinetic properties (KM etc.) and optimal conditions (substrate concentration, protein concentration, pH etc.) were established to allow routine assays of ChE activity to proceed under pseudo-first order conditions. The sensitivity of ChEs to a locally significant pesticide, iprobenfos (IBP; kitazin) was established in terms of IC50 concentrations. Brain AChE was relatively insensitive to IBP, but muscle AChE and BChE were sensitive to IBP concentrations in the high nM range. However, ambient IBP concentrations in Korean coastal waters are usually not high enough to cause detectable ChE inhibition in this species.  相似文献   
5.
The current study was designed to validate the biomarkers of sewage pollution in Mozambique Tilapia (Tilapia mossambica, Peters) reared in sewage treatment plant (STP) effluent in Ras Al Khaimah, United Arab Emerates, before and following depuration/detoxification. Cellular biomarkers, cholinesterase activity using acetylcholine as a substrate (acetylcholinesterase AChE) and reduced glutathione (GSH) and hepatosomatic index (HSI) were investigated in fresh water fish, Tilapia, raised in a fish farm (Group I/Clean, as Control), treated sewage water/TSW (Group II/Sewage) and thereafter exposed to fresh water in an aquarium for 6 weeks (Group III/Depurated) for depuration. The results showed significantly lower levels of AChE activities in liver (26% p < 0.01) and muscle (30% p < 0.01) of the fish reared in the STP water (Group II/Sewage) as compared to those recorded in the fish from fish farm (Group I/Clean). The depressed AChE level was fully restored in the muscle but partially in the liver after depuration (Group III/Depurated). In contrast, GSH levels were significantly raised in both liver (1.3-fold p < 0.01) and muscle (4-fold) of Group II fish as compared to Group I (control) fish raised in fish farm and following depuration in fresh water (Group III/Depurated) elevated GSH level in liver restored to control values, while remained unchanged in muscle. The average hepatosomatic index (HSI = weight of liver × 100/total fish weight), an indicator of hepatomegaly, in the Group II fish reared in TSW was also significantly higher than that in the reference Group I fish, but decreased to control level in Group III fish following depuration. This study suggests the importance of cellular biomarkers, AChE, GSH and hepatosomatic index in monitoring the impact of sewage water pollution on fish caused by a complex mixture of chemico-biological contaminants and its mitigation following depuration, an effective mean of fish detoxification.  相似文献   
6.
海藻组分抑制乙酰胆碱酯酶活性研究   总被引:12,自引:0,他引:12  
采用乙酰胆碱酯酶抑制剂活性筛选模型对采自青岛沿海的22种海藻样品提取物的石油醚组分和乙酸乙酯组分进行了活性筛选.结果表明,22种海藻的石油醚组分均具有不同程度的乙酰胆碱酯酶抑制活性,其中亮管藻、海头红、鸭毛藻和孔石莼表现出较强的活性,在浓度为50μg/ml时的抑制率均大于50.0%,分别为50.5%、55.5%、56.6%和65.8%;其他大部分海藻的抑制率在30.1%到48.9%之间.与石油醚组分不同的是,只有少数海藻的乙酸乙酯组分表现出乙酰胆碱酯酶抑制活性,其中鸭毛藻的活性最为显著,在浓度为25μg/ml时抑制率高达71.8%;孔石莼的乙酸乙酯组分也具有较强的抑制活性;其余海藻的乙酸乙酯组分对乙酰胆碱酯酶的抑制活性较弱,有些不仅没有活性,反而表现出不同程度的增强作用.  相似文献   
7.
《Comptes Rendus Geoscience》2018,350(4):173-179
The aim of the present study was to test biomarker responses in an edible mollusk, Donax trunculus L. (Mollusca, Bivalvia) associated with environmental pollution in the Gulf of Annaba (northeastern Algeria). The biomarkers selected were glutathione S-transferase (GST), acetylcholinesterase (AChE) and metallothioneins (MTs). Samples were collected seasonally (September 2014, and January, April and July 2015) from two sites located over the Gulf of Annaba: El Battah and Sidi Salem. The results obtained reveal that autumn and winter were the two seasons that show an increase in GST activity, an inhibition of AChE activity and a high rate of MT. In addition, a decrease in AChE activity, an increase in both GST activity and MT levels in D. Trunculus collected from Sidi Salem in comparison with those of El Battah were observed. The biomarker responses at the Sidi Salem site reflect the presence of certain pro-oxidative compounds such as metals (Cd, Cu, Pb, Zn, Mn and Fe) determined in sediments in winter (January) 2015. Moreover, metal concentrations, except Fe, were higher at Sidi Salem than at El Battah. Overall, the Gulf of Annaba remains contaminated by heavy metal. However, this metallic contamination is relatively low and the risks for local population via this edible species were also low.  相似文献   
8.
The ecological relevance of polychaetes coupled with their easy culture and maintenance in the laboratory, has led them to become increasingly used in marine ecotoxicological studies, raising the need to validate frequently applied monitoring tools at various biological levels. The present study was aimed to characterize the cholinesterases (ChE) activity in the polychaete Capitella teleta, using three substrates (acetylthiocholine iodide, propionylthiocholine iodide, and S-butyrylthiocholine iodide) and four known inhibitors (eserine hemisulfate, BW284c51, iso-OMPA and chlorpyrifos-oxon). Results showed that most of the measured cholinesterase activity was acetylcholinesterase (AChE). Inhibition of enzyme kinetic experiments denoted that sensitivity of C. teleta’s ChE to the organophosphorous metabolite chlorpyrifos-oxon (IC50 = 60.72 nM) was analogous to some fish species. This study highlights the relevance of ChE characterization before its use as a biomarker in ecotoxicology and biomonitoring studies.  相似文献   
9.
Measurement of acetylcholinesterase (AChE) is widely used as a biomarker of exposure to neurotoxic compounds in aquatic environments. In the present study, AChE activity was monitored in the clam Tapes philippinarum in the Lagoon of Venice, with the aim of evaluating the possible exposure of animals to neurotoxic compounds. Two sampling strategies were followed. In the first case, temporal and spatial variations of AChE activity were measured in clams collected seasonally (from October 2003 to June 2004) in 3 sites of the Lagoon: Campalto (site 1), near a sewage treatment plant, Marghera (site 2), a highly polluted area, and Poveglia (site 3), a reference site. The condition index (CI) of clams was also calculated. In the second case, AChE activity was measured in clams collected at the end of seasonal samplings in 12 sites located throughout the Lagoon: areas licensed for clam farming (sites 5 to 11), nearby canals characterised by waste waters from agricultural areas (sites 4, 12, 13, 14), and a reference site outside the Lagoon (site 15). Results revealed a significant reduction in AChE activity in clams from Marghera in October, January and April, indicating their probable exposure to neurotoxic compounds originating in the industrial zone of Porto Marghera. A seasonal trend in AChE activity was also observed, enzyme activity being higher in January and lower in June. Clams from Campalto generally had higher CI values than those from Marghera and Poveglia. However, no particular correlation between AChE activity and CI was found. Lastly, marked differences in AChE activity were recorded when comparing enzyme activity of clams from various sites in the Lagoon of Venice with those of clams collected at site 15. Significant reductions in AChE activity were observed in animals collected in both nearby canals and licensed areas, indicating the homogeneous spatial distribution of potentially neurotoxic compounds throughout the Lagoon. It is probable that sediment mobilisation caused by clam harvesting and the passage of shipping plays an important role in resuspension of persistent contaminants having neurotoxic activity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号