首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   3篇
大气科学   1篇
地球物理   6篇
地质学   14篇
海洋学   9篇
自然地理   3篇
  2023年   1篇
  2021年   1篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2011年   3篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1990年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
1.
The DACIA PLAN (Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics) deep seismic sounding survey was performed in August–September 2001 in south-eastern Romania, at the same time as the regional deep refraction seismic survey VRANCEA 2001. The main goal of the experiment was to obtain new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea zone, including the Focsani Basin. The seismic reflection line had a WNW–ESE orientation, running from internal East Carpathians units, across the mountainous south-eastern Carpathians, and the foreland Focsani Basin towards the Danube Delta. There were 131 shot points along the profile, with about 1 km spacing, and data were recorded with stand-alone RefTek-125s (also known as “Texans”), supplied by the University Texas at El Paso and the PASSCAL Institute. The entire line was recorded in three deployments, using about 340 receivers in the first deployment and 640 receivers in each of the other two deployments. The resulting deep seismic reflection stacks, processed to 20 s along the entire profile and to 10 s in the eastern Focsani Basin, are presented here. The regional architecture of the latter, interpreted in the context of abundant independent constraint from exploration seismic and subsurface data, is well imaged. Image quality within and beneath the thrust belt is of much poorer quality. Nevertheless, there is good evidence to suggest that a thick (10 km) sedimentary basin having the structure of a graben and of indeterminate age underlies the westernmost part of the Focsani Basin, in the depth range 10–25 km. Most of the crustal depth seismicity observed in the Vrancea zone (as opposed to the more intense upper mantle seismicity) appears to be associated with this sedimentary basin. The sedimentary successions within this basin and other horizons visible further to the west, beneath the Carpathian nappes, suggest that the geometry of the Neogene and recent uplift observed in the Vrancea zone, likely coupled with contemporaneous rapid subsidence in the foreland, is detached from deeper levels of the crust at about 10 km depth. The Moho lies at a depth of about 40 km along the profile, its poor expression in the reflection stack being strengthened by independent estimates from the refraction data. Given the apparent thickness of the (meta)sedimentary supracrustal units, the crystalline crust beneath this area is quite thin (< 20 km) supporting the hypothesis that there may have been delamination of (lower) continental crust in this area involved in the evolution of the seismic Vrancea zone.  相似文献   
2.
3.
The Plio-Pleistocene succession of the Venice area represents part of the infill of a foreland region located between three mountain chains: the Northern Apennines, the Southern Alps and the Dinarides. This structural setting favored the development of a complex stratigraphic architecture of the succession, mostly due to the conveying of sediments from the Southern Alps to the north and the Northern Apennines to the south, in particular since the activation of strong subsidence related to the NE-ward migration of the Apennine foredeep in the early Pleistocene. Accordingly, the studied succession is composed of five third-order sequences mostly controlled by tectonics, the most recent of which display complex patterns due to the interfingering of sedimentary bodies showing contrasting directions of progradation and pinch-out. Despite this, the sequence stratigraphic method still can be applied in the present context, allowing to recognize diagnostic stratal architectures and reconstruct the relative sea-level history of the region. Moreover, the recognized peculiar stratigraphic architecture of the basin fill may serve as an analogue that needs to be taken into account to predict the distribution of porous coarse-grained sedimentary units in similar contexts, aiding for a profitable exploration and production of reservoirs and source/sealing rocks.  相似文献   
4.
An integrated stratigraphic analysis has been made of the Tarcău Nappe (Moldavidian Domain, Eastern Romanian Carpathians), coupled with a geochemical study of organic-rich beds. Two Main Sequence Boundaries (Early Oligocene and near to the Oligocene–Aquitanian boundary, respectively) divide the sedimentary record into three depositional sequences. The sedimentation occurred in the central area of a basin supplied by different and opposite sources. The high amount of siliciclastics at the beginning of the Miocene marks the activation of the “foredeep stage”. The successions studied are younger than previously thought and they more accurately date the deformation of the different Miocene phases affecting the Moldavidian Basin. The intervals with black shales identified are related to two main separate anoxic episodes with an age not older than Late Rupelian and not before Late Chattian. The most important organic-rich beds correspond to the Lower Menilites, Bituminous Marls and Lower Dysodilic Shales Members (Interval 2). These constitute a good potential source rock for petroleum, with homogeneous Type II oil-prone organic matter, highly lipidic and thermally immature. The deposition of black shales has been interpreted as occurring within a deep, periodically isolated and tectonically controlled basin.  相似文献   
5.
This paper presents a new structural-stratigraphic approach to constrain the reservoir potential of the middle Miocene turbidite systems within the Monagas Fold-Thrust Belt (MFTB) and Maturín Sub-Basin (MSB) of eastern Venezuela. In the frontal anticline structures of the MFTB (Amarilis Area) light hydrocarbons have been produced from these turbidite systems which were deposited in a foreland basin with a complex tectonostratigraphic evolution.In order to predict the location of other analogous reservoirs we used the structural model presented in Part I (Parra et al., 2010) to developed a palaeo-topographic reconstruction at early-middle Miocene. We have then used this reconstruction to constrain the palaeogeography of the middle Miocene foredeep where the turbidites were deposited. The area considered has 5000 km2.By middle Miocene four regions are identified: 1) The southern basin margin dipped 1.5-2.5° north; 2) The foredeep axis had a southwest-northeast orientation. Within the foredeep the proto-structures of the MFTB created submerged highs that control the distribution of sediments; 3) The northern basin margin dipped 3-4° south; the coastline was controlled by the Pirital thrust sheet; 4) The main source of sediments was located towards the northwest on the Pirital thrust sheet and Serranía del Interior.Variations in shortening across the strike of the Pirital thrust were accommodated by a lateral ramp which controlled the location of a valley that acted as the main sediment pathway for the sediments that fed the turbidite system. This relationship between the thrust belt geomorphology and the location of turbidite sediment within the foredeep must be considered in order to assess the distribution of the Miocene turbidite reservoirs.  相似文献   
6.
Fossil Bryozoa occurs usually in shallow-water environments. One of the rare deep-water associations of Bryozoa has been studied in a profile at Kralice nad Oslavou. According to studies of foraminifera, the paleodepth was more than 150 m and less than 500 m. The bryozoan assemblages are poor, consisting of four species only, dominated by Tervia irregularis (Cyclostomatida) and Reteporella kralicensis sp.n. (Cheilostomatida), a new species being described in detail.  相似文献   
7.
The results are presented of an investigation of bankfull discharge in two Polish Carpathian streams: Skawica and Krzyworzeka. Existing definitions of river bankfull were reviewed and applied in tests carried out on selected cross‐sections of the streams. The Woodyer method was given special attention, with a correspondingly detailed survey of plants characterizing river benches. Riley's bench index method and the methods of Williams, Wolman, Schumm and Brown, and Woloszyn were tested. The report concludes that bankfull discharge value for a mountain stream should not be reported as a single number, but rather as a range of discharges within which one could expect the bankfull value to lie. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
8.
Joanna Korpak   《Geomorphology》2007,92(3-4):166
The purpose of this paper is to explain the influence of river training on channel changes in mountain rivers. Also considered are the causes of failure of different training schemes. The research was conducted on the regulated Mszanka and Porębianka Rivers, belonging to the Raba River drainage basin in the Polish Flysh Carpathian Mountains. Channel mapping carried out in 2004 drew attention to the contemporary morphology of the channels and the development of their dynamic typology. General changes in channel morphometry and land cover were identified by comparing cartographic sources from various years. Archive material from Cracow's Regional Water Management Authority (RZGW) was used to analyse the detailed channel changes caused by each regulation structure. The material consisted of technical designs of individual training works, as well as plans, longitudinal profiles and cross-sections of trained channel reaches. A series of minimum annual water stages at the Mszana Dolna gauging station was used to determine the tendency of channel bed degradation over 53 years. During the first half of the 20th century, the middle and lower courses of the Mszanka and Porębianka Rivers had braided patterns. The slopes, mostly covered with crops, were an important source of sediment delivery to the river channels. Today, both channels are single-threaded, narrow and sinuous. Downcutting is the leading process transforming the channels. They cut down to bedrock along about 60% of their lengths. The main type of channel is an erosion channel, which occurs also in the middle and lower courses of the rivers. The channel sediment deficit is an important cause for river incision. Sediment supply to the channels was reduced after a replacement of crops on the slopes by meadows or forests. Gravel mining has also caused channel downcutting. The rapid channel changes began after 1959, as systematic training was introduced. Channel regulation seems therefore to be a major factor determining channel adjustment. Debris dams and groynes were built before 1980 and these caused the greatest change of channel pattern, increase of channel gradient and magnitude of river incision. After that date the measures mostly involved drop structures. From then on, the rate of downcutting decreased considerably, but has not ceased. The rivers continued to incise until bedrock was exposed or training structures were destroyed. After that, a tendency to lateral migration and local braiding were observed in the deepened channel. The channels displayed a tendency to return to their morphology and dynamic from before the training. The results demonstrate that river training distorts the equilibrium of channel systems. A channel becomes divided into artificial reaches, which later follow different evolutionary patterns. Most training schemes on mountain channels are ineffective in the long term, as river managers seem to consider a channel at a reach scale only. Individual channel reaches, however, are not independent but rather form a system that must be managed at the entire channel scale.  相似文献   
9.
Using the standard methods of paleogeographic analysis, small-scale paleogeographic sketch maps of the Verkhnyaya Bureya and Gudzhik depressions of the Bureya Foredeep are compiled for the Pliensbachian, Bajocian-Bathonian, Callovian, and Tithonian ages of the Jurassic. Marine sedimentation settings that existed during the Late Triassic and the major part of the Jurassic are characterized.  相似文献   
10.
The thin-layer build of the Carpathian Foredeep Miocene formations and large petrophysical parameter variation cause seismic images of gas-saturated zones to be ambiguous, and the location of prospection wells on the basis of anomalous seismic record is risky. A method that assists reservoir interpretation of standard recorded seismic profiles (P waves) can be a converted wave recording (PS waves). This paper presents the results of application of a multicomponent seismic survey for the reservoir interpretation over the Chałupki Dębniańskie gas deposit, carried out for the first time in Poland by Geofizyka Kraków Ltd. for the Polish Oil and Gas Company. Seismic modeling was applied as the basic research tool, using the SeisMod program based on the finite-difference solution of the acoustic wave equation and equations of motion. Seismogeological models for P waves were developed using Acoustic Logs; S-wave model (records only from part of the well) was developed on the basis of theoretical curves calculated by means of the Estymacja program calibrated with average S-velocities, calculated by correlation of recorded P and PS wavefields with 1D modeling. The conformity between theoretical and recorded wavefields makes it possible to apply the criteria established on the basis of modeling for reservoir interpretation. Direct hydrocarbon indicators (bright spots, phase change, time sag) unambiguously identify gas-prone layers within the ChD-2 prospect. A partial range of the indicators observed in the SW part of the studied profile (bright spot that covers a single, anticlinally bent seismic horizon) points to saturation of the horizon. The proposed location is confirmed by criteria determined for converted waves (continuous seismic horizons with constant, high amplitude) despite poorer agreement between theoretical and recorded wavefields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号