首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地质学   8篇
天文学   1篇
  2018年   1篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
排序方式: 共有9条查询结果,搜索用时 359 毫秒
1
1.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   
2.
富Ca,Al包体、球粒和蠕虫状橄榄石集合体都是早期星云事件的产物。本文探讨了4个富橄榄石的富Ca,Al组分集合体的矿物岩石学特征,并对它们进行了对比。矿物岩石学特征表明含橄榄石边的富尖晶石-辉石型包体和富Ca,Al组分蠕虫状橄榄石集合体都属于星云直接凝聚的产物,而富钙长石-橄榄石型包体(POI)和富Ca,Al组分球粒经历过熔融结晶过程。矿物模式组成表明POI包体和富Ca,Al组分球粒可能是认识典型富Ca,Al包体与球粒之间相互关系的钥匙。蠕虫状橄榄石集合体GRV022459-2C1中尖晶石普遍具有高的FeO含量,表明其蚀变发生于高氧逸度的星云环境。球粒与粗粒富Ca,Al包体可能属于同一热事件的产物,粗粒富Ca,Al包体形成于富Ca,Al矿物富集的区域,Mg,Fe质硅酸盐球粒形成于富Ca,Al矿物缺失的区域,POI包体和富Ca,Al组分球粒可能形成于上述两个区域之间的过渡区域。  相似文献   
3.
We review models of chondrite component transport in the gaseous protoplanetary disk. Refractory inclusions were likely transported by turbulent diffusion and possible early disk expansion, and required low turbulence for their subsequent preservation in the disk, possibly in a dead zone. Chondrules were produced locally but did not necessarily accrete shortly after formation. Water may have been enhanced in the inner disk because of inward drift of solids from further out, but likely not by more than a factor of a few. Incomplete condensation in chondrites may be due to slow reaction kinetics during temperature decrease. While carbonaceous chondrite compositions might be reproduced in a “two-component” picture (Anders, 1964), such components would not correspond to simple petrographic constituents, although part of the refractory element fractionations in chondrites may be due to the inward drift of refractory inclusions. Overall, considerations of chondrite component transport alone favor an earlier formation for carbonaceous chondrites relative to their non-carbonaceous counterparts, but independent objections have yet to be resolved.  相似文献   
4.
New bulk compositional data for 34 Allende chondrules are presented. Whole chondrules were analyzed by instrumental neutron activation analysis (INAA). The new data set is evaluated together with older INAA data on Allende chondrules and recent INAA data on Mokoia chondrules. The Ni/Co ratios of 200 chondrules are close to the CI- or solar ratio. The chondritic Ni/Co ratios require an unfractionated chondritic metal source and set a limit to the fraction of metal lost from molten chondrules. The bulk chondrule Fe/Ni and Fe/Co ratios are more variable but on average chondritic. Iridium and other refractory metals have extremely variable concentrations in chondrules. High Ir chondrules have chondritic Ir/Sc ratios. They are dominated by CAI (Ca,Al-rich inclusion) components. Low Ir chondrules have approximately chondritic Ir/Ni ratios reflecting mixing with chondritic metal. In low Ir chondrules Ir correlates and in high Ir chondrules Ir does not correlate with Ni or Co. A large fraction of Ir may have entered chondrules in variable amounts as tiny grains of refractory metal alloys.Most Allende chondrules have Ir/Sc ratios below bulk meteorite ratios. Matrix must have a complementary high Ir/Sc ratio, as bulk Allende has approximately chondritic Ir/Sc ratio. Similarly, the high average Ir/Ni ratios of Allende chondrules must be balanced by low Ir/Ni ratios in matrix to obtain the bulk Allende Ir/Ni ratio, which is close to the average solar system ratio.More recent data on single chondrules from Allende by ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and ICP-OES (Inductively Coupled Optical Emission Spectrometry) show the same trends as the INAA data discussed here.  相似文献   
5.
In this paper we investigate two major issues: (1) What are chondrules, and (2) why do they exist? We review the literature pertaining to each question and explore answers. We discuss the diversity of chondrules, especially with regard to their igneous textures and compositions. We review the constraints that have been placed experimentally on the thermal histories of chondrules and list those fundamental properties that all chondrule formation models must explain quantitatively in order to be considered predictive, quantitative models. We provide background on the three major classes of chondrule formation models currently being discussed, and scrutinize each with respect to how well they adhere to the experimental constraints placed on chondrule formation. Finally, we list several unresolved issues that are now or will soon be at the forefront of chondrule research.  相似文献   
6.
Chondrules and matrix are the major components of chondritic meteorites and represent a significant evolutionary step in planet formation. The formation and evolution of chondrules and matrix and, in particular, the mechanics of chondrule formation remain the biggest unsolved challenge in meteoritics. A large number of studies of these major components not only helped to understand these in ever greater detail, but also produced a remarkably large body of data. Studying all available data has become known as ?big data? analyses and promises deep insights – in this case – to chondrule and matrix formation and relationships. Looking at all data may also allow one to better understand the mechanism of chondrule formation or, equally important, what information we might be missing to identify this process. A database of all available chondrule and matrix data further provides an overview and quick visualisation, which will not only help to solve actual problems, but also enable students and future researchers to quickly access and understand all we know about these components. We collected all available data on elemental bulk chondrule and matrix compositions in a database that we call ChondriteDB. The database also contains petrographic and petrologic information on chondrules. Currently, ChondriteDB contains about 2388 chondrule and 1064 matrix data from 70 different publications and 161 different chondrites. Future iterations of ChondriteDB will include isotope data and information on other chondrite components. Data quality is of critical importance. However, as we discuss, quality is not an objective category, but a subjective judgement. Quantifiable data acquisition categories are required that allow selecting the appropriate data from a database in the context of a given research problem. We provide a comprehensive overview on the contents of ChondriteDB. The database is available as an Excel file upon request from the senior author of this paper, or can be accessed through MetBase.  相似文献   
7.
The Tagish Lake meteorite, an ungrouped C2 chondrite that is related to CI and CM chondrites, is a heterogeneous accretionary breccia with several distinct lithologies that, in bulk, are thought to represent the first known sample of a primitive carbonaceous D-type asteroid. Textural and chemical zoning of clasts and matrix have been little studied and promise additional insight into early solar system processes in both the solar nebula and on the Tagish Lake parent asteroid. We have examined an intact 2.9 g fragment and two polished thin sections from the spring 2000 (non-pristine) Tagish Lake collection to ascertain the major mineralogy and textures of notable features such as chondrules, amoeboid olivine aggregates (AOAs), inclusions, clasts, matrix, and fusion crust. We designed three stages of analysis for this friable meteorite: an initial, non-destructive in situ reconnaissance by μXRD to document meteorite mineralogy and textures and to identify features of interest, followed by spatially correlated μXRD, SEM-EDX and colour SEM-CL analysis of polished thin sections to fully understand mineralogy and the record of texture development, and finally higher resolution SEM-BSE mapping to document smaller scale relationships.Our analyses reveal several previously unreported or poorly characterized features: (1) distinctive colour cathodoluminescence (CL) zoning in relict CAI spinel, in chondrule and AOA forsterite, and in calcite nodules occurring throughout the Tagish Lake matrix. Forsterite frequently shows CL colour and intensity zonation that does not correspond with major or minor element differences resolvable with EPMA, indicating a trace element and/or structural CL-activation mechanism for the zonation that is likely of secondary origin; (2) an irregular inclusion dominated by magnesioaluminate spinel, dolomite, and phyllosilicates with traces of a Ca, Ti oxide phase (likely perovskite) interpreted to be a relict CAI; (3) variable preservation of mesostasis glass in porphyritic olivine chondrules. We anticipate that our multi-technique methodology, particularly non-destructive μXRD, can be successfully applied to other rare and friable materials such as the pristine Tagish Lake fragments.  相似文献   
8.
The recently discovered metal-rich carbonaceous chondrite Isheyevo consists of Fe, Ni-metal grains, chondrules, heavily hydrated matrix lumps and rare refractory inclusions. It contains several lithologies with mineralogical characteristics intermediate between the CH and CB carbonaceous chondrites; the contacts between the lithologies are often gradual. Here we report the mineralogy and petrography of chondrules in the metal-rich (70 vol%) and metal-poor (20 vol%) lithologies. The chondrules show large variations in textures [cryptocrystalline, skeletal olivine, barred olivine, porphyritic olivine, porphyritic olivine-pyroxene, porphyritic pyroxene], mineralogy and bulk chemistry (magnesian, ferrous, aluminum-rich, silica-rich). The porphyritic magnesian (Type I) and ferrous (Type II) chondrules, as well as silica- and Al-rich plagioclase-bearing chondrules are texturally and mineralogically similar to those in other chondrite groups and probably formed by melting of mineralogically diverse precursor materials. We note, however, that in contrast to porphyritic chondrules in other chondrite groups, those in Isheyevo show little evidence for multiple melting events; e.g., relict grains are rare and igneous rims or independent compound chondrules have not been found. The magnesian cryptocrystalline and skeletal olivine chondrules are chemically and mineralogically similar to those in the CH and CB carbonaceous chondrites Hammadah al Hamra 237, Queen Alexandra Range 94411 (QUE94411) and MacAlpine Hills 02675 (MAC02675), possibly indicating a common origin from a vapor–melt plume produced by a giant impact between planetary embryos; the interchondrule metal grains, many of which are chemically zoned, probably formed during the same event. The magnesian cryptocrystalline chondrules have olivine–pyroxene normative compositions and are generally highly depleted in Ca, Al, Ti, Mn and Na; they occasionally occur inside chemically zoned Fe, Ni-metal grains. The skeletal olivine chondrules consist of skeletal forsteritic olivine grains overgrown by Al-rich (up to 20 wt% Al2O3) low-Ca and high-Ca pyroxene, and interstitial anorthite-rich mesostasis. Since chondrules with such characteristics are absent in ordinary, enstatite and other carbonaceous chondrite groups, the impact-related chondrule-forming mechanism could be unique for the CH and CB chondrites. We conclude that Isheyevo and probably other CH chondrites contain chondrules of several generations, which may have formed at different times, places and by different mechanisms, and subsequently accreted together with the heavily hydrated matrix lumps and refractory inclusions into a CH parent body. Short-lived isotope chronology, oxygen isotope and trace element studies of the Isheyevo chondrules can provide a possible test of this hypothesis.  相似文献   
9.
We review the oxygen isotopic compositions of minerals in chondrules and compound objects composed of a chondrule and a refractory inclusion, and bulk oxygen isotopic compositions of chondrules in unequilibrated ordinary, carbonaceous, enstatite, and Kakangari-like chondrites, focusing on data acquired using secondary ion mass-spectrometry and laser fluorination coupled with mass-spectrometry over the last decade. Most ferromagnesian chondrules from primitive (unmetamorphosed) chondrites are isotopically uniform (within 3–4‰ in Δ17O) and depleted in 16O (Δ17O>−7‰) relative to amoeboid olivine aggregates (AOAs) and most calcium–aluminum-rich inclusions (CAIs) (Δ17O<−20‰), suggesting that these classes of objects formed in isotopically distinct gaseous reservoirs, 16O-poor and 16O-rich, respectively. Chondrules uniformly enriched in 16O (Δ17O<−15‰) are exceptionally rare and have been reported only in CH chondrites. Oxygen isotopic heterogeneity in chondrules is mainly due to the presence of relict grains. These appear to consist of chondrules of earlier generations and rare refractory inclusions; with rare exceptions, the relict grains are 16O-enriched relative to chondrule phenocrysts and mesostasis. Within a chondrite group, the magnesium-rich (Type I) chondrules tend to be 16O-enriched relative to the ferrous (Type II) chondrules. Aluminum-rich chondrules in ordinary, enstatite, CR, and CV chondrites are generally 16O-enriched relative to ferromagnesian chondrules. No systematic differences in oxygen isotopic compositions have been found among these chondrule types in CB chondrites. Aluminum-rich chondrules in carbonaceous chondrites often contain relict refractory inclusions. Aluminum-rich chondrules with relict CAIs have heterogeneous oxygen isotopic compositions (Δ17O ranges from −20‰ to 0‰). Aluminum-rich chondrules without relict CAIs are isotopically uniform and have oxygen isotopic compositions similar to, or approaching, those of ferromagnesian chondrules. Phenocrysts and mesostases of the CAI-bearing chondrules show no clear evidence for 16O-enrichment compared to the CAI-free chondrules. Spinel, hibonite, and forsterite of the relict refractory inclusions largely retained their original oxygen isotopic compositions. In contrast, plagioclase and melilite of the relict CAIs experienced melting and 16O-depletion to various degrees, probably due to isotopic exchange with an 16O-poor nebular gas. Several igneous CAIs experienced isotopic exchange with an 16O-poor nebular gas during late-stage remelting in the chondrule-forming region. On a three-isotope diagram, bulk oxygen isotopic compositions of most chondrules in ordinary, enstatite, and carbonaceous chondrites plot above, along, and below the terrestrial fractionation line, respectively. Bulk oxygen isotopic compositions of chondrules in altered and/or metamorphosed chondrites show evidence for mass-dependent fractionation, reflecting either interaction with a gaseous/fluid reservoir on parent asteroids or open-system thermal metamorphism. Bulk oxygen isotopic compositions of chondrules and oxygen isotopic compositions of individual minerals in chondrules and refractory inclusions from primitive chondrites plot along a common line of slope of 1, suggesting that only two major reservoirs (gas and solids) are needed to explain the observed variations. However, there is no requirement that each had a permanently fixed isotopic composition. The absolute (207Pb–206Pb) and relative (27Al–26Mg) chronologies of CAIs and chondrules and the differences in oxygen isotopic compositions of most chondrules (16O-poor) and most refractory inclusions (16O-rich) can be interpreted in terms of isotopic self-shielding during UV photolysis of CO in the initially 16O-rich (Δ17O−25‰) parent molecular cloud or protoplanetary disk. According to these models, the UV photolysis preferentially dissociates C17O and C18O in the parent molecular cloud and in the peripheral zones of the protoplanetary disk. If this process occurs in the stability field of water ice, the released atomic 17O and 18O are incorporated into water ice, while the residual CO gas becomes enriched in 16O. During the earliest stages of evolution of the protoplanetary disk, the inner solar nebula had a solar H2O/CO ratio and was 16O-rich. During this time, AOAs and the 16O-rich CAIs and chondrules formed. Subsequently, the inner solar nebula became H2O- and 16O-depleted, because ice-rich dust particles, which were depleted in 16O, agglomerated outside the snowline (5 AU), drifted rapidly towards the Sun and evaporated. During this time, which may have lasted for 3 Myr, most chondrules and the 16O-depleted igneous CAIs formed. We infer that most chondrules formed from isotopically heterogeneous, but 16O-depleted precursors, and experienced isotopic exchange with an 16O-poor nebular gas during melting. Although the relative roles of the chondrule precursor materials and gas–melt isotopic exchange in establishing oxygen isotopic compositions of chondrules have not been quantified yet, mineralogical, chemical, and isotopic evidence indicate that Type I chondrules may have formed in chemical and isotopic equilibrium with nebular gas of variable isotopic composition. Whether these variations were spatial or temporal are not known yet.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号