首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   821篇
  免费   320篇
  国内免费   169篇
测绘学   11篇
大气科学   12篇
地球物理   631篇
地质学   534篇
海洋学   42篇
天文学   6篇
综合类   24篇
自然地理   50篇
  2023年   8篇
  2022年   19篇
  2021年   28篇
  2020年   29篇
  2019年   46篇
  2018年   36篇
  2017年   52篇
  2016年   43篇
  2015年   51篇
  2014年   73篇
  2013年   46篇
  2012年   29篇
  2011年   38篇
  2010年   36篇
  2009年   58篇
  2008年   71篇
  2007年   41篇
  2006年   70篇
  2005年   60篇
  2004年   58篇
  2003年   39篇
  2002年   48篇
  2001年   35篇
  2000年   29篇
  1999年   31篇
  1998年   26篇
  1997年   21篇
  1996年   39篇
  1995年   33篇
  1994年   23篇
  1993年   21篇
  1992年   10篇
  1991年   7篇
  1990年   12篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   10篇
  1977年   2篇
  1954年   6篇
排序方式: 共有1310条查询结果,搜索用时 31 毫秒
1.
The Hellenic plate boundary region, located in the collision zone between the Nubian/Arabian and Eurasian lithospheric plates, is one of the seismo-tectonically most active areas of Europe. During the last 15 years, GPS measurements have been used to determine the crustal motion in the area of Greece with the aim to better understand the geodynamical processes of this region. An extended reoccupation network covering whole Greece has been measured periodically in numerous GPS campaigns since the late eighties, and a continuous GPS network has been operated in the region of the Ionian Sea since 1995. In this paper, we present a new detailed high-quality solution of continuous and campaign-type measurements acquired between 1993 and 2003. During the GPS processing, a special effort was made to obtain consistent results with highest possible accuracies and reliabilities. Data of 54 mainly European IGS and EUREF sites were included in the GPS processing in order to obtain results which are internally consistent with the European kinematic field and order to allow for a regional interpretation. After an overview of the results of the IGS/EUREF sites, the results from more than 80 stations in Greece are presented in terms of velocities, time series, trajectories and strain rates. Previous geodetic, geological and seismological findings are generally confirmed and substantially refined. New important results include the observation of deformation zones to the north and to the south of the North Aegean Trough and in the West Hellenic arc region, arc-parallel extension of about 19 mm/yr along the Hellenic arc, and compression between the Ionian islands and the Greek mainland. Due to continuous long-term observations of 4–8 years, it was possible to extract height changes from the GPS time series. In Greece, we observe a differential subsidence of the order of 2 mm/yr between the northern and central Ionian islands across the Kefalonia fault zone. The differential subsidence of the central Ionian islands with respect to the northwestern Greek mainland amounts to 4 mm/yr.  相似文献   
2.
The Neogene Volcanic Province (NVP) within the Betic Cordillera (SE Spain) consists of three main metapelitic enclave suites (from SW to NE: El Hoyazo, Mazarrón and Mar Menor). Since the NVP represents a singular place in the world where crustal enclaves were immediately quenched after melting, their microstructures provide a “photograph” of the conditions at depth just after the moment of the melting.

The thermobarometric information provided by the different microstructural assemblages has been integrated with the geophysical and geodynamical published data into a model of the petrologic evolution of the Mar Menor enclaves. They were equilibrated at 2–3 kbar, 850–900 °C, and followed a sequence of heating melt producing reactions. A local cooling event evidenced by minor melt crystallization preceded the eruption.

The lower crustal studies presented in this work contribute to the knowledge of: (i) the partial melting event beneath the Mar Menor volcanic suite through a petrologic detailed study of the enclaves; (ii) how the microstructures of fast cooled anatectic rocks play an important role in tracing the magma evolution in a chamber up to the eruption, and how they can be used as pseudothermobarometers; (iii) the past and current evolution of the Alborán Domain (Betic Cordillera) and Mediterranean Sea, and how the base of a metapelitic crust has melted within an active geodynamic setting.  相似文献   

3.
The eastern margin of the Variscan belt in Europe comprises plate boundaries between continental blocks and terranes formed during different tectonic events. The crustal structure of that complicated area was studied using the data of the international refraction experiments CELEBRATION 2000 and ALP 2002. The seismic data were acquired along SW–NE oriented refraction and wide-angle reflection profiles CEL10 and ALP04 starting in the Eastern Alps, passing through the Moravo-Silesian zone of the Bohemian Massif and the Fore-Sudetic Monocline, and terminating in the TESZ in Poland. The data were interpreted by seismic tomographic inversion and by 2-D trial-and-error forward modelling of the P waves. Velocity models determine different types of the crust–mantle transition, reflecting variable crustal thickness and delimiting contacts of tectonic units in depth. In the Alpine area, few km thick LVZ with the Vp of 5.1 km s− 1 dipping to the SW and outcropping at the surface represents the Molasse and Helvetic Flysch sediments overthrust by the Northern Calcareous Alps with higher velocities. In the Bohemian Massif, lower velocities in the range of 5.0–5.6 km s− 1 down to a depth of 5 km might represent the SE termination of the Elbe Fault Zone. The Fore-Sudetic Monocline and the TESZ are covered by sediments with the velocities in the range of 3.6–5.5 km s− 1 to the maximum depth of 15 km beneath the Mid-Polish Trough. The Moho in the Eastern Alps is dipping to the SW reaching the depth of 43–45 km. The lower crust at the eastern margin of the Bohemian Massif is characterized by elevated velocities and high Vp gradient, which seems to be a characteristic feature of the Moravo-Silesian. Slightly different properties in the Moravian and Silesian units might be attributed to varying distances of the profile from the Moldanubian Thrust front as well as a different type of contact of the Brunia with the Moldanubian and its northern root sector. The Moho beneath the Fore-Sudetic Monocline is the most pronounced and is interpreted as the first-order discontinuity at a depth of 30 km.  相似文献   
4.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   
5.
Detrital zircon provides a powerful archive of continental growth and recycling processes. We have tested this by a combined laser ablation ICP-MS U–Pb and Lu–Hf analysis of homogeneous growth domains in detrital zircon from late Paleozoic coastal accretionary systems in central Chile and the collisional Guarguaráz Complex in W Argentina. Because detritus from a large part of W Gondwana is present here, the data delineate the crustal evolution of southern South America at its Paleopacific margin, consistent with known data in the source regions.Zircon in the Guarguaráz Complex mainly displays an U–Pb age cluster at 0.93–1.46 Ga, similar to zircon in sediments of the adjacent allochthonous Cuyania Terrane. By contrast, zircon from the coastal accretionary systems shows a mixed provenance: Age clusters at 363–722 Ma are typical for zircon grown during the Braziliano, Pampean, Famatinian and post-Famatinian orogenic episodes east of Cuyania. An age spectrum at 1.00–1.39 Ga is interpreted as a mixture of zircon from Cuyania and several sources further east. Minor age clusters between 1.46 and 3.20 Ga suggest recycling of material from cratons within W Gondwana.The youngest age cluster (294–346 Ma) in the coastal accretionary prisms reflects a so far unknown local magmatic event, also represented by rhyolite and leucogranite pebbles. It sets time marks for the accretion history: Maximum depositional ages of most accreted metasediments are Middle to Upper Carboniferous. A change of the accretion mode occurred before 308 Ma, when also a concomitant retrowedge basin formed.Initial Hf-isotope compositions reveal at least three juvenile crust-forming periods in southern South America characterised by three major periods of juvenile magma production at 2.7–3.4 Ga, 1.9–2.3 Ga and 0.8–1.5 Ga. The 176Hf/177Hf of Mesoproterozoic zircon from the coastal accretionary systems is consistent with extensive crustal recycling and addition of some juvenile, mantle-derived magma, while that of zircon from the Guarguaráz Complex has a largely juvenile crustal signature. Zircon with Pampean, Famatinian and Braziliano ages (< 660 Ma) originated from recycled crust of variable age, which is, however, mainly Mesoproterozoic. By contrast, the Carboniferous magmatic event shows less variable and more radiogenic 176Hf/177Hf, pointing to a mean early Neoproterozoic crustal residence. This zircon is unlikely to have crystallized from melts of metasediments of the accretionary systems, but probably derived from a more juvenile crust in their backstop system.  相似文献   
6.
王述功  高仰 《海洋科学》1989,13(2):24-27
根据我们实测的水深、重力连续剖面资料,计算了自东海至北斐济盆地的地壳厚度。本文旨在对冲绳海槽至马里亚纳海沟的重力异常和地壳结构进行初步的研究。该地段位于太平洋板块俯冲带以西,构造活动十分复杂、剧烈,并含有多种类型的地壳结构。  相似文献   
7.
The Blake Outer Ridge is a 480–kilometer long linear sedimentary drift ridge striking perpendicular to the North American coastline. By modeling free-air gravity anomalies we tested for the presence of a crustal feature that may control the location and orientation of the Blake Outer Ridge. Most of our crustal density models that match observed gravity anomalies require an increase in oceanic crustal thickness of 1–3 km on the southwest side of the Blake Outer Ridge relative to the northeast side. Most of these models also require 1–4 km of crustal thinning in zone 20–30 km southwest of the crest of the Blake Outer Ridge. Although these features are consistent with the structure of oceanic fracture zones, the Blake Outer Ridge is not parallel to adjacent known fracture zones. Magnetic anomalies suggest that the ocean crust beneath this feature formed during a period of mid-ocean ridge reorganization, and that the Blake Outer Ridge may be built upon the bathymetric expression of an oblique extensional feature associated with ridge propagation. It is likely that the orientation of this trough acted as a catalyst for sediment deposition with the start of the Western Boundary Undercurrent in the mid-Oligocene.  相似文献   
8.
陈志明 《地质科学》1993,28(1):61-67
华南海西—印支成矿期内,成矿序列完整,类型齐全,矿种繁多,为其它成矿期所莫及。沉积矿床需要稳定的地质背景,层控矿床形成的较有利的地质背景是稳中有动。  相似文献   
9.
The La Guitarra deposit (Temascaltepec district, South-Central Mexico), belongs to the low/intermediate sulfidation epithermal type, has a polymetallic character although it is currently being mined for Ag and Au. The mineralization shows a polyphasic character and formed through several stages and sub-stages (named I, IIA, IIB, IIC, IID, and III). The previous structural, mineralogical, fluid inclusion and stable isotope studies were used to constrain the selection of samples for volatile and helium isotope analyses portrayed in this study. The N2/Ar overall range obtained from analytical runs on fluid inclusion volatiles, by means of Quadrupole Mass Spectrometry (QMS), is 0 to 2526, and it ranges 0 to 2526 for stage I, 0 to 1264 for stage IIA, 0 to 1369 for stage IIB, 11 to 2401 for stage IIC, 19 to 324 for stage IID, and 0 to 2526 for stage III. These values, combined with the CO2/CH4 ratios, and N2-He-Ar and N2-CH4-Ar relationships, suggest the occurrence of fluids from magmatic, crustal, and shallow meteoric sources in the forming epithermal vein deposit. The helium isotope analyses, obtained by means of Noble Gas Mass Spectrometry, display R/Ra average values between 0.5 and 2, pointing to the occurrence of mantle-derived helium that was relatively diluted or “contaminated” by crustal helium. These volatile analyses, when correlated with the stable isotope data from previous works and He isotope data, show the same distribution of data concerning sources for mineralizing fluids, especially those corresponding to magmatic and crustal sources. Thus, the overall geochemical data from mineralizing fluids are revealed as intrinsically consistent when compared to each other.The three main sources for mineralizing fluids (magmatic, and both deep and shallow meteoric fluids) are accountable at any scale, from stages of mineralization down to specific mineral associations. The volatile and helium isotope data obtained in this paper suggest that the precious metal-bearing mineral associations formed after hydrothermal pulses of predominantly oxidized magmatic fluids, and thus it is likely that precious metals were carried by fluids with such origin. Minerals from base-metal sulfide associations record both crustal and magmatic sources for mineralizing fluids, thus suggesting that base metals could be derived from deep leaching of crustal rocks. At the La Guitarra epithermal deposit there is no evidence for an evolution of mineralizing fluids towards any dominant source. Rather than that, volatile analyses in fluid inclusions suggest that this deposit formed as a pulsing hydrothermal system where each pulse or set of pulses accounts for different compositions of mineralizing fluids.The positive correlation between the relative content of magmatic fluids (high N2/Ar ratios) and H2S suggests that the necessary sulfur to carry mostly gold as bisulfide complexes came essentially from magmatic sources. Chlorine necessary to carry silver and base metals was found to be abundant in inclusion fluids and although there is no evidence about its source, it is plausible that it may come from magmatic sources as well.  相似文献   
10.
The study area in the northwest Sinai represents one of the most significant regions in the Egyptian basement intensely invaded by post-orogenic calc-alkaline dyke swarms. Two post-orogenic dyke swarms have been recognized in NW Sinai namely: (1) mafic dykes of basalt, basaltic andesite and andesite composition and (2) felsic dykes of dacite, rhyodacite and rhyolite composition. These basaltic to rhyolitic dykes intruded contemporaneously and shortly after the intrusion of the post-orogenic leucogranite. The mafic and felsic dykes are enriched in incompatible elements, especially in the large ion lithophile elements (e.g. K, Rb, Ba) and depleted in high field strength elements with negative P, Ti and Nb anomalies. Major and trace element geochemistry indicates that investigated mafic and felsic magma types are not related via fractional crystallization. The protoliths of the mafic and felsic dykes appear to have evolved from different parental magmas. The incompatible trace element patterns favour a derivation of the mafic dykes from melting of a garnet peridotite source followed by fractional crystallization of olivine, clinopyroxene amphibole and zircon. The felsic dykes, on the other hand, could be generated by melting of garnet-free source modified subsequently by fractional crystallization of plagioclase, apatite and titanomagnetite. This implies variable source characteristics at the end of the Pan-African in the NW Sinai.The mafic and felsic dykes can be related to an intracontinental setting and that this was accompanied by a chemical evolution of the subcontinental lithosphere. Magma generation and ascent in the area was favoured by extensional movements, which is already known from other areas in NE Africa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号