首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   3篇
地质学   4篇
海洋学   6篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2006年   2篇
  2003年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有13条查询结果,搜索用时 78 毫秒
1.
Hydrocyclones are widely used in the mining and chemical industries. An attempt has been made in this study, to develop a CFD (computational fluid dynamics) model, which is capable of predicting the flow patterns inside the hydrocyclone, including accurate prediction of flow split as well as the size of the air-core. The flow velocities and air-core diameters are predicted by DRSM (differential Reynolds stress model) and LES (large eddy simulations) models were compared to experimental results. The predicted water splits and air-core diameter with LES and RSM turbulence models along with VOF (volume of fluid) model for the air phase, through the outlets for various inlet pressures were also analyzed. The LES turbulence model led to an improved turbulence field prediction and thereby to more accurate prediction of pressure and velocity fields. This improvement was distinctive for the axial profile of pressure, indicating that air-core development is principally a transport effect rather than a pressure effect.  相似文献   
2.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
3.
《国际泥沙研究》2020,35(4):355-364
The scour and deposition pattern around an abutment under constant discharge condition is calculated using a three dimensional (3D) Computational Fluid Dynamics (CFD) model. The Reynolds-Averaged Navier Stokes (RANS) equations are solved in three dimensions using a CFD model. The Level Set Method (LSM) is used for calculation of both free surface and bed topography. The two-equation turbulence model (k-ε and k-ω) is used to calculate the eddy viscosity in the RANS equations. The pressure term in the RANS equations on a staggered grid is modeled using the Chorin's projection method. The 5th order Weighted Essentially Non-Oscillatory (WENO) scheme discretizes the convective term of the RANS equations. The Kovacs and Parker and Dey formulations are used for the reduction in bed shear stress on the sloping bed. The model also used the sandslide algorithm which limits bed shear stress reduction during the erosion process. The numerical model solution is validated against experimental results collected at the Politecnico di Milano, Milan, Italy. Further, the numerical model is tested for performance by varying the grid sizes and key parameters like the space and time discretization schemes. The effect of varying bed porosity has been evaluated. Overall, the free surface is well represented in a realistic manner and bed topography is well predicted using the Level Set Method (LSM).  相似文献   
4.
Achieving a reliable and accurate numerical prediction of the self-propulsion performance of a ship is still an open problem that poses some relevant issues. Several CFD methods, ranging from boundary element methods (BEM) to higher-fidelity viscous Reynolds averaged Navier–Stokes (RANS) based solvers, can be used to accurately analyze the separate problems, i.e. the open water propeller and the hull calm water resistance. However, when the fully-coupled self-propulsion problem is considered, i.e. the hull advancing at uniform speed propelled by its own propulsion system, several complexities rise up. Typical flow simplifications adopted to speed-up the simulations of the single analysis (hull and propeller separately) lose their validity requiring a more complex solver to tackle the fully-coupled problem. The complexity rises up further when considering a maneuver condition. This aspect increases the computational burden and, consequently, the required time which becomes prohibitive in a preliminary ship design stage.The majority of the simplified methods proposed in literature to include propeller effects, without directly solve the propeller flow, in a high-fidelity viscous solver are not able to provide all the commonly required self-propulsion coefficients. In this work, a new method to enrich the results from a body force based approach is proposed and investigated, with the aim to reduce as much as possible the computational burden without losing any useful result. This procedure is tested for validation on the KCS hull form in self-propulsion and maneuver conditions.  相似文献   
5.
A 3D numerical modeling of the wave generated by the Vajont slide, one of the most destructive ever occurred, is presented in this paper. A meshless Lagrangian Smoothed Particle Hydrodynamics (SPH) technique was adopted to simulate the highly fragmented violent flow generated by the falling slide in the artificial reservoir. The speed-up achievable via General Purpose Graphic Processing Units (GP-GPU) allowed to adopt the adequate resolution to describe the phenomenon. The comparison with the data available in literature showed that the results of the numerical simulation reproduce satisfactorily the maximum run-up, also the water surface elevation in the residual lake after the event.Moreover, the 3D velocity field of the flow during the event and the discharge hydrograph which overtopped the dam, were obtained.  相似文献   
6.
The mechanism of earthquakes is presented by use of the elastic dislocation theory. With consideration of the continuous dislocation field, the general problem of medium deformation requires analysis based on non-Riemannian geometry with the concept of the continuum with a discontinuity (no-more continuum). Here we derive the equilibrium equation (Navier equation) for the continuous dislocation field by introducing the relation between the concepts of the continuous dislocation theory and non-Riemannian geometry. This equation is a generalization of the Laplace equation, which can describe fractal processes like diffusion limited aggregation (DLA) and dielectric breakdown (1313). Moreover, the kinematic compatibility equations derived from Navier equation are the Laplace equations and the solution of Navier equation can be put in terms of functions which satisfy the biharmonic equation, suggesting a close formal connection with fractal processes. Therefore, the relationship between the non-Riemannian geometry and the fractal geometry of fracturing (damage) in geomaterials as earthquakes can be understood by using the Navier equation. Moreover, the continuous dislocation theory can be applied to the problem of the earthquake formation with active folding related with faulting (active flexural-slip folding related to the continuous dislocation field).  相似文献   
7.
Coastal groundwater systems can have a considerable impact on sediment transport and foreshore evolution in the surf and swash zones. Process-based modeling of wave motion on a permeable beach taking into account wave-aquifer interactions was conducted to investigate the effects of the unconfined coastal aquifer on beach profile evolution, and wave shoaling on the water table. The simulation first dealt with wave breaking and wave runup/rundown in the surf and swash zones. Nearshore hydrodynamics and wave propagation in the cross-shore direction were simulated by solving numerically the two-dimensional Navier–Stokes equations with a k–ε turbulence closure model and the Volume-Of-Fluid technique. The hydrodynamic model was coupled to a groundwater flow model based on SEAWAT-2000, the latter describing groundwater flow in the unconfined coastal aquifer. The combined model enables the simulation of wave-induced water table fluctuations and the effects of infiltration/exfiltration on nearshore sediment transport. Numerical results of the coupled ocean/aquifer simulations were found to compare well with experimental measurements. Wave breaking and infiltration/exfiltration increase the hydraulic gradient across the beachface and enhance groundwater circulation inside the porous medium. The large hydraulic head gradient in the surf zone leads to infiltration across the beachface before the breaking point, with exfiltration taking place below the breaking point. In the swash zone, infiltration occurs at the upper part of the beach and exfiltration at the lower part. The simulations confirm that beaches with a low water table tend to be accreted while those with a high water table tend to be eroded.  相似文献   
8.
In porous media, the dynamics of the invading front between two immiscible fluids is often characterized by abrupt reconfigurations caused by local instabilities of the interface. As a prototype of these phenomena we consider the dynamics of a meniscus in a corner as it can be encountered in angular pores. We investigate this process in detail by means of direct numerical simulations that solve the Navier–Stokes equations in the pore space and employ the Volume of Fluid method (VOF) to track the evolution of the interface. We show that for a quasi-static displacement, the numerically calculated surface energy agrees well with the analytical solutions that we have derived for pores with circular and square cross sections. However, the spontaneous reconfigurations are irreversible and cannot be controlled by the injection rate: they are characterized by the amount of surface energy that is spontaneously released and transformed into kinetic energy. The resulting local velocities can be orders of magnitude larger than the injection velocity and they induce damped oscillations of the interface that possess their own time scales and depend only on fluid properties and pore geometry. In complex media (we consider a network of cubic pores) reconfigurations are so frequent and oscillations last long enough that increasing inertial effects leads to a different fluid distribution by influencing the selection of the next pore to be invaded. This calls into question simple pore-filling rules based only on capillary forces. Also, we demonstrate that inertial effects during irreversible reconfigurations can influence the work done by the external forces that is related to the pressure drop in Darcy’s law. This suggests that these phenomena have to be considered when upscaling multiphase flow because local oscillations of the menisci affect macroscopic quantities and modify the constitutive relationships to be used in macro-scale models. These results can be extrapolated to other interface instabilities that are at the origin of fast pore-scale events, such as Haines jumps, snap-off and coalescence.  相似文献   
9.
The validity of the independence principle applied to the vortex-induced vibration (VIV) of an inclined cylinder in steady flow is investigated by conducting numerical simulations. In order to create a perfect end-effect-free condition, periodic boundary condition is applied on the two end boundaries that are perpendicular to the cylinder. It is found that the response amplitude and frequency for an inclination angle of α = 45° agree well with their counterparts for α = 0°. The numerical results demonstrated the validity of the independence principle in the case of vortex-induced vibration, which has not been demonstrated by laboratory tests due to the difficulty in avoiding the end effects.  相似文献   
10.
A computational framework for hydrodynamic shape optimization of complex ship hull form is proposed and applied to improve the calm water performance of the KRISO Container Ship (KCS). The framework relies on three key features: a novel shape morphing method based on a combination of subdivision surfaces and free form deformations, a robust three dimensional viscous computational fluid dynamic solver based on the openFOAM open-source libraries and a Gaussian process-response surface method (GP-RSM) based on ordinary Kriging model which has been created to speed-up the evaluation of the quantity of interest (QoI) of the design process.The accuracy of the hydrodynamic solver is proven by comparing the obtained results against available experimental measurements. A preliminary sensitivity analysis on the mesh size has been carried out aiming at reducing the computational burden required by the CFD predictions. Three GP-RSMs have been trained relying on increasing number of hull designs. Each surrogate model has been cross-validated by both leave-one-out and k-fold techniques. The behaviours of these multi-dimensional surfaces have been analyzed in details by sampling the investigated design space with 107 points according to a Full-Factorial algorithm, highlighting the regions of maximum deviation with respect to the resistance of the reference hull. The three optimum designs provided by the corresponding GP-RSM models have been verified by using high-fidelity CFD simulations with a refined mesh configuration. Calm water resistance, wave patterns and pressure distributions over the selected hull surfaces have been discussed in the light of the generated shape variations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号