首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   30篇
  国内免费   73篇
测绘学   1篇
大气科学   1篇
地球物理   110篇
地质学   265篇
海洋学   11篇
天文学   1篇
综合类   20篇
自然地理   7篇
  2023年   4篇
  2022年   28篇
  2021年   4篇
  2020年   4篇
  2019年   10篇
  2018年   7篇
  2017年   21篇
  2016年   20篇
  2015年   38篇
  2014年   18篇
  2013年   21篇
  2012年   7篇
  2011年   11篇
  2010年   16篇
  2009年   20篇
  2008年   14篇
  2007年   29篇
  2006年   21篇
  2005年   7篇
  2004年   12篇
  2003年   11篇
  2002年   14篇
  2001年   6篇
  2000年   7篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   8篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1979年   1篇
排序方式: 共有416条查询结果,搜索用时 15 毫秒
1.
沂水崔家峪玻璃用石英砂岩矿床赋存于早寒武世李官组砂岩段中.呈近水平的层状产出。因其岩石坚硬.矿体呈环山的平台状分布。矿体厚度大,矿石品级高,特级品矿石二氧化硅平均含量98.47%,铁杂质平均含量0.043%(选矿后,铁杂质含量可降至0.02%以下),为一优质玻璃硅质原料矿床。矿石为细一中粒石英砂岩,粒度以中粒为主,矿石由碎屑颗粒和胶结物组成,碎屑成分含量为97%~98%.其中绝大部分是石英颗粒.具典型的砂屑结掏。该矿床属滨海陆源沉积矿床。  相似文献   
2.
The auriferous veins at Jinniushan occurs within the Jinniushan faulted zone in the Kunyushan Granite. Optical observation reveals that gold ore body formed during the main stage of hydrothermal activity. Detailed geothermometric studies of fluid inclusions from the veins show that the forming temperature ranges between 130℃ and 370℃ and the salinity is from 4.01 to 15.21 wvt percent NaCl. The ore-forming fluid is featured by low to moderate salinity, and low to moderate temperature. According to investigations of the values of vapor/liquid and temperatures of the ore-forming fluids, we propose that the boiling fluid inclusions exist in the main mineralization stages. Fluid boiling is suggested as a mechanism for the precipitation of gold from the hydrothermal fluid in the Jinniushan gold deposit.  相似文献   
3.
The behaviour of quartz during metamorphism is studied based on two case studies from the Barrovian terrains of Sulitjelma in arctic Scandinavia and Loch Tay in the Central Highlands Dalradian of Scotland. Both terrains preserve evidence for metamorphism in pelites involving nucleation and growth of garnet at different times in the deformation history. Data are presented on the size, shape and crystallographic orientation of quartz preserved as inclusions in garnet and as grains in the surrounding matrix. While quartz-grains remain small and dispersed between mica grains, deformation appears to be dominated by grain-boundary sliding accommodated by dissolution–precipitation. At amphibolite facies, textural coarsening occurs by dissolution of small quartz grains and growth of larger quartz grains, coupled with segregation of quartz from mica. As a result, quartz deforms by dislocation creep, developing crystallographic preferred orientations (CPO) consistent with both coaxial and non-coaxial strain. Quartz CPOs with <0001> axes lying parallel to foliation and stretching direction are commonly developed, and best explained by mechanical rotation of inequant (detrital?) quartz grains. There is no evidence for selective entrapment of quartz inclusions in garnet on the basis of quartz crystallographic orientation.  相似文献   
4.
A combined study of chronometric dating and oxygen isotope analysis for minerals from vein and host eclogite as well as regional country-rock gneiss in the Dabie orogen provides a direct constraint on timing of fluid flow in this orogen formed by continental collision. Oxygen isotope ratios of vein minerals are significantly lower than those of the host eclogite, but comparable with those of the regional gneiss. This suggests the veining fluid came from the regional gneiss (i.e. exhumed slab itself) rather than the host eclogite. While zircon U–Pb and phengite Ar–Ar dating yields ages of 214 to 222 Ma for the eclogite and gneiss, the vein gives a quartz–muscovite Rb–Sr isochron age of 181 Ma and a muscovite K–Ar age of 179 Ma. Thus the veining postdates the Triassic ultrahigh pressure metamorphic event, witnessing postcollisional fluid flow after the orogenic cycle of continental collision.  相似文献   
5.
Large pyroclastic rhyolites are snapshots of evolving magma bodies, and preserved in their eruptive pyroclasts is a record of evolution up to the time of eruption. Here we focus on the conditions and processes in the Oruanui magma that erupted at 26.5 ka from Taupo Volcano, New Zealand. The 530 km3 (void-free) of material erupted in the Oruanui event is comparable in size to the Bishop Tuff in California, but differs in that rhyolitic pumice and glass compositions, although variable, did not change systematically with eruption order. We measured the concentrations of H2O, CO2 and major and trace elements in zoned phenocrysts and melt inclusions from individual pumice clasts covering the range from early to late erupted units. We also used cathodoluminescence imaging to infer growth histories of quartz phenocrysts. For quartz-hosted inclusions, we studied both fully enclosed melt inclusions and reentrants (connecting to host melt through a small opening). The textures and compositions of inclusions and phenocrysts reflect complex pre-eruptive processes of incomplete assimilation/partial melting, crystallization differentiation, magma mixing and gas saturation. ‘Restitic’ quartz occurs in seven of eight pumice clasts studied. Variations in dissolved H2O and CO2 in quartz-hosted melt inclusions reflect gas saturation in the Oruanui magma and crystallization depths of ∼3.5–7 km. Based on variations of dissolved H2O and CO2 in reentrants, the amount of exsolved gas at the beginning of eruption increased with depth, corresponding to decreasing density with depth. Pre-eruptive mixing of magma with varying gas content implies variations in magma bulk density that would have driven convective mixing. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
6.
Near the eastern end of the Tonale fault zone, a segment of the Periadriatic fault system in the Italian Alps, the Adamello intrusion produced a syn-kinematic contact aureole. A temperature gradient from 250 to 700 °C was determined across the Tonale fault zone using critical syn-kinematic mineral assemblages from the metasedimentary host rocks surrounding deformed quartz veins. Deformed quartz veins sampled along this temperature gradient display a transition from cataclasites to mylonites (frictional–viscous transition) at 280±30 °C. Within the mylonites, zones characterized by different dynamic recrystallization mechanisms were defined: Bulging recrystallization (BLG) was dominant between 280 and 400 °C, subgrain rotation recrystallization (SGR) in the 400–500 °C interval, and the transition to dominant grain boundary migration recrystallization (GBM) occurred at 500 °C. The microstructures associated with the three recrystallization mechanisms and the transitions between them can be correlated with experimentally derived dislocation creep regimes. Bulk texture X-ray goniometry and computer-automated analysis of preferred [c]-axis orientations of porphyroclasts and recrystallized grains are used to quantify textural differences that correspond to the observed microstructural changes. Within the BLG- and SGR zones, porphyroclasts show predominantly single [c]-axis maxima. At the transition from the SGR- to the GBM zone, the texture of recrystallized grains indicates a change from [c]-axis girdles, diagnostic of multiple slip systems, to a single maximum in Y. Within the GBM zone, above 630±30 °C, the textures also include submaxima, which are indicative of combined basal a- and prism [c] slip.  相似文献   
7.
8.
Fracturing and frictional sliding of quartz and granite under dry condition generates fractoluminescence, charged particle emission and electromagnetic radiation. Various kinds of experiments indicate that surface charge density on fracture or frictional slip surface of quartz and granite is 10−4 to 10−2 C/m2 which is larger than bound charges induced by the disappearance of piezoelectricity due to the release of stress. Hole and electron trapping centers, which is found in semiconductor devices with the Si–SiO2 system, are causes of surface charging on fracture or frictional slip surface of quartz crystal. The quantity of the surface charge is enough to cause corona discharge that can generate earthquake lights. The mechanism considering the hole and electron trapping centers has a probability to explain why non-piezoelectric minerals or rocks generate electromagnetic phenomena. It can be one of origins of seismo-electromagnetic phenomena (SEP).  相似文献   
9.
The microstructure of a quartzite experimentally deformed and partially recrystallised at 900 °C, 1.2 GPa confining pressure and strain rate 10−6/s was investigated using orientation contrast and electron backscatter diffraction (EBSD). Boundaries between misoriented domains (grains or subgrains) were determined by image analysis of orientation contrast images. In each domain, EBSD measurements gave the complete quartz lattice orientation and enabled calculation of misorientation angles across every domain boundary. Results are analysed in terms of the boundary density, which for any range of misorientations is the boundary length for that range divided by image area. This allows a more direct comparison of misorientation statistics between different parts of a sample than does a treatment in terms of boundary number.The strain in the quartzite sample is heterogeneous. A 100×150 μm low-strain partially recrystallised subarea C was compared with a high-strain completely recrystallised subarea E. The density of high-angle (>10°) boundaries in E is roughly double that in C, reflecting the greater degree of recrystallisation. Low-angle boundaries in C and E are produced by subgrain rotation. In the low-angle range 0–10° boundary densities in both C and E show an exponential decrease with increasing misorientation. The densities scale with exp(−θ/λ) where λ is approximately 2° in C and 1° in E; in other words, E has a comparative dearth of boundaries in the 8–10° range. We explain this dearth in terms of mobile high-angle boundaries sweeping through and consuming low-angle boundaries as the latter increase misorientation through time. In E, the density of high-angle boundaries is larger than in C, so this sweeping would have been more efficient and could explain the relative paucity of 8–10° boundaries.The boundary density can be generalised to a directional property that gives the degree of anisotropy of the boundary network and its preferred orientation. Despite the imposed strain, the analysed samples show that boundaries are not, on average, strongly aligned. This is a function of the strong sinuosity of high-angle boundaries, caused by grain boundary migration. Low-angle boundaries might be expected, on average, to be aligned in relation to imposed strain but this is not found.Boundary densities and their generalisation in terms of directional properties provide objective measures of microstructure. In this study the patterns they show are interpreted in terms of combined subgrain rotation and migration recrystallisation, but it may be that other microstructural processes give distinctive patterns when analysed in this fashion.  相似文献   
10.
The polyphase evolution of the Seridó Belt (NE-Brazil) includes D1 crust formation at 2.3–2.1 Ga, D2 thrust tectonics at 1.9 Ga and crustal reworking by D3 strike-slip shear zones at 600 Ma. Microstructural investigations within mylonites associated with D2 and D3 events were used to constrain the tectono-thermal evolution of the belt. D2 shear zones commenced at deeper crustal levels and high amphibolite facies conditions (600–650 °C) through grain boundary migration, subgrain rotation and operation of quartz c-prism slip. Continued shearing and exhumation of the terrain forced the re-equilibration of high-T fabrics and the switching of slip systems from c-prism to positive and negative a-rhombs. During D3, enhancement of ductility by dissipation of heat that came from syn-D3 granites developed wide belts of amphibolite facies mylonites. Continued shearing, uplift and cooling of the region induced D3 shear zones to act in ductile-brittle regimes, marked by fracturing and development of thinner belts of greenschist facies mylonites. During this event, switching from a-prism to a-basal slip indicates a thermal path from 600 to 350 °C. Therefore, microstructures and quartz c-axis fabrics in polydeformed rocks from the Seridó Belt preserve the record of two major events, which includes contrasting deformation mechanisms and thermal paths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号