首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   1篇
测绘学   7篇
大气科学   1篇
地球物理   1篇
地质学   7篇
自然地理   8篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   7篇
  2011年   4篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Reliable quantification of savanna vegetation structure is critical for accurate carbon accounting and biodiversity assessment under changing climate and land-use conditions. Inventories of fine-scale vegetation structural attributes are typically conducted from field-based plots or transects, while large-area monitoring relies on a combination of airborne and satellite remote sensing. Both of these approaches have their strengths and limitations, but terrestrial laser scanning (TLS) has emerged as the benchmark for vegetation structural parameterization – recording and quantifying 3D structural detail that is not possible from manual field-based or airborne/spaceborne methods. However, traditional TLS approaches suffer from similar spatial constraints as field-based inventories. Given their small areal coverage, standard TLS plots may fail to capture the heterogeneity of landscapes in which they are embedded. Here we test the potential of long-range (>2000 m) terrestrial laser scanning (LR-TLS) to provide rapid and robust assessment of savanna vegetation 3D structure at hillslope scales. We used LR-TLS to sample entire savanna hillslopes from topographic vantage points and collected coincident plot-scale (1 ha) TLS scans at increasing distances from the LR-TLS station. We merged multiple TLS scans at the plot scale to provide the reference structure, and evaluated how 3D metrics derived from LR-TLS deviated from this baseline with increasing distance. Our results show that despite diluted point density and increased beam divergence with distance, LR-TLS can reliably characterize tree height (RMSE = 0.25–1.45 m) and canopy cover (RMSE = 5.67–15.91%) at distances of up to 500 m in open savanna woodlands. When aggregated to the same sampling grain as leading spaceborne vegetation products (10–30 m), our findings show potential for LR-TLS to play a key role in constraining satellite-based structural estimates in savannas over larger areas than traditional TLS sampling can provide.  相似文献   
2.
Pollen and charcoal records from two large, shallow lakes reveal that throughout most of the past 50,000 yr Noel Kempff Mercado National Park, in northeastern lowland Bolivia (southwestern Amazon Basin), was predominantly covered by savannas and seasonally dry semideciduous forests. Lowered atmospheric CO2 concentrations, in combination with a longer dry season, caused expansion of dry forests and savannas during the last glacial period, especially at the last glacial maximum. These ecosystems persisted until the mid-Holocene, although they underwent significant species reassortment. Forest communities containing a mixture of evergreen and semideciduous species began to expand between 6000 and 3000 14C yr B.P. Humid evergreen rain forests expanded to cover most of the area within the past 2000 14C yr B.P., coincident with a reduction in fire frequencies. Comparisons between modern pollen spectra and vegetation reveal that the Moraceae-dominated rain forest pollen spectra likely have a regional source area at least 2-3 km beyond the lake shore, whereas the grass- and sedge-dominated savanna pollen spectra likely have a predominantly local source area. The Holocene vegetation changes are consistent with independent paleoprecipitation records from the Bolivian Altiplano and paleovegetation records from other parts of southwestern Amazonia. The progressive expansion in rain forests through the Holocene can be largely attributed to enhanced convective activity over Amazonia, due to greater seasonality of insolation in the Southern Hemisphere tropics driven by the precession cycle according to the Milankovitch Astronomical Theory.  相似文献   
3.
The expansion of modern agriculture in developing countries presents numerous challenges for environmental policy makers. Environmental policies for agriculture in north-eastern Brazil’s soybean belt are analyzed, with emphasis on the role of a non-state actor in leading policy reforms. An organization representing large farmers is leading policy reforms to reduce the environmental impacts of modern agriculture. By contrast, state agencies are relatively weak and ineffective. The analysis situates this question conceptually in literatures stressing the political and structural causes of corporate environmentalism and literatures explaining the increasingly strong role of non-state actors in environmental governance. The case study focuses on the content of reforms, reasons why the non-state actor is so prominent, and the implications of policy reforms. State agencies face major challenges in environment-agriculture policy debates in places where environmental subsidies are unlikely, environmental information is poor, and organized private interests are influential.  相似文献   
4.
Although increased woody plant abundance has been reported in tropical savannas worldwide, techniques for detecting the direction and magnitude of change are mostly based on visual interpretation of historical aerial photography or textural analysis of multi-temporal satellite images. These techniques are prone to human error and do not permit integration of remotely sensed data from diverse sources. Here, we integrate aerial photographs with high spatial resolution satellite imagery and use a discrete wavelet transform to objectively detect the dynamics in bush encroachment at two protected Zimbabwean savanna sites. Based on the recently introduced intensity-dominant scale approach, we test the hypotheses that: (1) the encroachment of woody patches into the surrounding grassland matrix causes a shift in the dominant scale. This shift in the dominant scale can be detected using a discrete wavelet transform regardless of whether aerial photography and satellite data are used; and (2) as the woody patch size stabilises, woody cover tends to increase thereby triggering changes in intensity. The results show that at the first site where tree patches were already established (Lake Chivero Game Reserve), between 1972 and 1984 the dominant scale of woody patches initially increased from 8 m before stabilising at 16 m and 32 m between 1984 and 2012 while the intensity fluctuated during the same period. In contrast, at the second site, which was formely grass-dominated site (Kyle Game Reserve), we observed an unclear dominant scale (1972) which later becomes distinct in 1985, 1996 and 2012. Over the same period, the intensity increased. Our results imply that using our approach we can detect and quantify woody/bush patch dynamics in savanna landscapes.  相似文献   
5.
This study analyses possible relationships between natural processes taking place in savannas and the tree patterns found in savannas. This can lead to new hypotheses about which processes are driving savanna physiognomy. To do so tree patterns were quantified for African savannas from historical aerial photographs applying frequently used landscape metrics. Also, additional data for these areas were collected to quantify the processes taking place at these locations. Correlations between tree pattern indices and explaining factors were analysed. We found a negative trend between tree cover and density of sheep and goats, but no relationship between tree cover and density of cattle, suggesting that small livestock have an effect on tree cover, but that larger livestock (or obligate grazers) do not. Also, a positive correlation between human population density and tree cover was found. Possible explanations for the found relations are discussed. Subsequent ways to analyse the latter correlation are discussed, and the potential of the presented historical database of aerial photographs is highlighted.  相似文献   
6.
Southern African savannas are mixed plant communities where C3 trees co-exist with C4 grasses. Here foliar δ15N and δ13C were used as indicators of nitrogen uptake and of water use efficiency to investigate the effect of the rainfall regime on the use of nitrogen and water by herbaceous and woody plants in both dry and wet seasons. Foliar δ15N increased as aridity rose for both C3 and C4 plants for both seasons, although the magnitude of the increase was different for C3 and C4 plants and for two seasons. Soil δ15N also significantly increased with aridity. Foliar δ13C increased with aridity for C3 plants in the wet season but not in the dry season, whereas in C4 plants the relationship was more complex and non-linear. The consistently higher foliar δ15N for C3 plants suggests that C4 plants may be a superior competitor for nitrogen. The different foliar δ13C relationships with rainfall may indicate that the C3 plants have an advantage when competing for water resources. The differences in water and nitrogen use likely collectively contribute to the tree-grass coexistence in savannas. Such differences facilitate interpretations of palaeo-vegetation composition variations and help predictions of vegetation composition changes under future climatic scenarios.  相似文献   
7.
Climate changes affect the abundance, geographic extent, and floral composition of vegetation, which are reflected in the pollen rain. Sediment cores taken from lakes and peat bogs can be analysed for their pollen content. The fossil pollen records provide information on the temporal changes in climate and palaeo-environments. Although the complexity of the variables influencing vegetation distribution requires a multi-dimensional approach, only a few research projects have used GIS to analyse pollen data. This paper presents a new approach to palynological data analysis by combining GIS and spatial modelling. Eastern Colombia was chosen as a study area owing to the migration of the forest–savanna boundary since the last glacial maximum, and the availability of pollen records. Logistic regression has been used to identify the climatic variables that determine the distribution of savanna and forest in eastern Colombia. These variables were used to create a predictive land-cover model, which was subsequently implemented into a GIS to perform spatial analysis on the results. The palynological data from the study area were incorporated into the GIS. Reconstructed maps of past vegetation distribution by interpolation showed a new approach of regional multi-site data synthesis related to climatic parameters. The logistic regression model resulted in a map with 85.7% predictive accuracy, which is considered useful for the reconstruction of future and past land-cover distributions. The suitability of palynological GIS application depends on the number of pollen sites, the distribution of the pollen sites over the area of interest, and the degree of overlap of the age ranges of the pollen records.  相似文献   
8.
A savanna system is a natural ecosystem in which the competition between grass and woody vegetation in a semi-arid rangeland should be maintained for its sustainable development. Finding an optimal management plan for obtaining maximum economic profit from raising cattle without loss of sustainability of the savanna system during a planning period is a great challenge for rangeland managers. In this study, we formulate the sustainable development planning of the savanna system as an optimal control model, in which maximization of the stocking rate of cattle during the planning period is chosen as the objective while sustainable development requirements are achieved through the constraints represented by the desired final state of the system. Using Pontryagin's maximum principle, the model is transformed into a two-point boundary-value problem with nonlinear differential equations that is then solved using an iterative approach. An example with a specified desired final state in a savanna system without fire is used to demonstrate the performance of the model and the algorithm. Numerical experiments show that the planning strategy obtained from the optimal control model achieves maximum economic profit from raising cattle during the planning period and simultaneously improves the resilience of the system and maintains sustainable development of the rangeland. The outcomes demonstrate that resilience, sustainable development and economic profit are consistent concepts in optimal management strategy for rangeland management.  相似文献   
9.
To date, it is still heatedly debated that whether the exposed Sunda Shelf was covered by savanna or rainforest in the Last Glacial Period (LGP). A lot of palynological evidences revealed that large increase of non-arboreal pollen did not occurred on the southern South China Sea (SCS), and lowland and montane rainforest pollen were still predominant. Most of the herb-predominated pollen records occurred on the northern Australia, possibly indicating dispersions of herbs from current distribution centers. As a result, we advocated that inland and connected exposed Sunda Shelf around the southern SCS were covered by tropical forests rather than savanna during the LGP, although climate was drier then. This conclusion is not only supported by palaeoclimate-vegetation modeling, but also corresponds with most of the palynological evidences from South America. Current palynological records also showed the lack of palaeoenviromental reconstruction in Southeast Asia, including less pollen records and ambiguous correlations between marine pollen assemblage and its catchment vegetation.  相似文献   
10.
Annual above-ground net primary production (ANPP), evapotranspiration (ET) and water use efficiency (WUE) of rangeland have the potential to provide an objective basis for establishing pricing for ecosystem services. To provide estimates of ANPP, we surveyed the biomass, estimated ET and prepared a water use efficiency for dwarf shrublands and arid savanna in the Riemvasmaak Rural Area, Northern Cape, South Africa. The annual production fraction was surveyed in 33 MODIS 1 km2 pixels and the results regressed against the MODIS fPAR product. This regression model was used to predict the standing green biomass (kg DM ha−1) for 2009 (dry year). Using an approach which combines potential evapotranspiration (ET0) and the MODIS fPAR product, we estimated actual evapotranspiration (ETa). These two models (greening standing biomass and ETa) were used to calculate the annual WUE for 2009. WUE was 1.6 kg DM mm−1 ha−1 yr−1. This value may be used to provide an estimate of ANPP in the absence of direct measurements of biomass and to provide a comparison of the water use efficiency of this rangeland with other rangeland types.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号