首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
  国内免费   2篇
地质学   76篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   43篇
  2012年   1篇
  2010年   10篇
  2009年   2篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  1998年   2篇
  1990年   1篇
  1984年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
Deep seismic reflection data across the Archaean Eastern Goldfields Province, northeastern Yilgarn Craton, Western Australia, have provided information on its crustal architecture and on several of its highly mineralised belts. The seismic reflection data allow interpretation of several prominent crustal scale features, including an eastward thickening of the crust, subdivision of the crust into three broad layers, the presence of a prominent east dip to the majority of the reflections and the interpretation of three east-dipping crustal-penetrating shear zones. These east-dipping shear zones are major structures that subdivide the region into four terranes. Major orogenic gold deposits in the Eastern Goldfields Province are spatially associated with these major structures. The Laverton Tectonic Zone, for example, is a highly mineralised corridor that contains several world-class gold deposits plus many smaller deposits. Other non crustal-penetrating structures within the area do not appear to be as well endowed metallogenically as the Laverton structure. The seismic reflection data have also imaged a series of low-angle shear zones within and beneath the granite–greenstone terranes. Where the low-angle shear zones intersect the major crustal-penetrating structures, a wedge shaped geometry is formed. This geometry forms a suitable fluid focusing wedge in which upward to subhorizontal moving fluids are focused and then distributed into the nearby complexly deformed greenstones.  相似文献   
2.
Mineral exploration drilling 60 km west of Leonora in 2008 intersected >95 m of poorly consolidated granitoid-dominated breccia at the base of a Cenozoic paleochannel beneath Lake Raeside. The breccia, initially interpreted as a kimberlite, is composed of poorly consolidated fragments of granitic gneiss, felsite and metamorphosed mafic rock within a matrix of fine to medium-grained breccia. Microscopic examination revealed quartz grains displaying well-developed planar deformation features (PDFs) dominated by the ω? {1013} planar set, diaplectic silica glass and diaplectic plagioclase glass. These features constitute the diagnostic hallmarks of shock metamorphism owing to high-velocity impact of a large meteorite or asteroid. The PDFs in quartz grains of the breccia are distinctly different from metamorphic deformation lamellae produced tectonically or in diatremes. Airborne total magnetic intensity data suggest an outline of an 11 km-diameter crater, consistent with the significant thickness of the shock-metamorphosed breccia at >95 m, suggestive of the existence of a large impact structure.  相似文献   
3.
The distribution of chemical elements at and near the Earth's surface, the so-called critical zone, is complex and reflects the geochemistry and mineralogy of the original substrate modified by environmental factors that include physical, chemical and biological processes over time.Geochemical data typically is illustrated in the form of plan view maps or vertical cross-sections, where the composition of regolith, soil, bedrock or any other material is represented. These are primarily point observations that frequently are interpolated to produce rasters of element distributions. Here we propose the application of environmental or covariate regression modelling to predict and better understand the controls on major and trace element geochemistry within the regolith. Available environmental covariate datasets (raster or vector) representing factors influencing regolith or soil composition are intersected with the geochemical point data in a spatial statistical correlation model to develop a system of multiple linear correlations. The spatial resolution of the environmental covariates, which typically is much finer (e.g. ∼90 m pixel) than that of geochemical surveys (e.g. 1 sample per 10-10,000 km2), carries over to the predictions. Therefore the derived predictive models of element concentrations take the form of continuous geochemical landscape representations that are potentially much more informative than geostatistical interpolations.Environmental correlation is applied to the Sir Samuel 1:250,000 scale map sheet in Western Australia to produce distribution models of individual elements describing the geochemical composition of the regolith and exposed bedrock. As an example we model the distribution of two elements – chromium and sodium. We show that the environmental correlation approach generates high resolution predictive maps that are statistically more accurate and effective than ordinary kriging and inverse distance weighting interpolation methods. Furthermore, insights can be gained into the landscape processes controlling element concentration, distribution and mobility from analysis of the covariates used in the model. This modelling approach can be extended to groups of elements (indices), element ratios, isotopes or mineralogy over a range of scales and in a variety of environments.  相似文献   
4.
The granite‐greenstone terranes of the Eastern Goldfields Province, Yilgarn Craton, Western Australia, are a major Australian and world gold and nickel source. The Kalgoorlie region, in particular, hosts several world‐class gold deposits. To attempt to understand why these deposits occur where they do, it is important to understand the crustal architecture in the region and how the major mineral systems operate in this architecture. One way to understand these relationships is to develop a detailed 3–D geological model for the region. The best method to map the 3–D geometry of major geological structures is by acquisition and interpretation of seismic‐reflection profiles. To contribute to this aim, a grid of deep seismic‐reflection traverses was acquired in 1999 to examine the 3–D geometry of the region in an area including the Kalgoorlie mineral region and mineral fields to the north and west. This grid was tied to the 1991 regional deep seismic traverse and 1997 high‐resolution seismic profiles in the same region. The grid covers an area measuring approximately 50 km wide by 50 km long and extended to a depth of approximately 50 km (below the base of the crust in this region). The resulting 3–D geological model was further constrained by both surface geological data and geophysical interpretations, with the seismic interpretations themselves also constrained by gravity and magnetic modelling. The 3–D model was used to investigate the geometric relationships between the major faults and shear zones in the area, the relationship between the granite‐greenstone succession and the basement, and the spatial relationships between the greenstones and the granites. Interpretation of the grid of seismic lines and construction of the 3–D geological model confirmed the existence of the detachment surface and led to the recognition that the granite‐greenstone contact usually occurs at a much shallower level than the detachment. Also, west‐dipping faults in the vicinity of the Golden Mile, including the Abattoir Shear through to Boulder‐Lefroy Fault, appear to be more important than previously thought in controlling the structure of that area. An antiformal thrust stack occurs beneath a triangle zone centred on the Golden Mile. The Black Flag Group was deposited in a probable extensional setting, and late extension was also probably more important than previously thought. The granite‐gneiss domes were uplifted by the formation of antiformal thrust stacks at depth beneath them.  相似文献   
5.
The Corinthia lode‐gold deposit in amphibolite‐facies greenstone belt rocks in the Southern Cross Province of the Archaean Yilgarn Block contains a largely undeformed pegmatite dyke emplaced during the last phases of movement along the Fraser's‐Corinthia shear zone. Gold mineralization and shear zone development were synchronous, and a Pb‐Pb isochron age of 2620 ±6 Ma for pegmatite emplacement either indirectly dates mineralization, or places a minimum age constraint on the timing of mineralization. This age is in accord with a broadly synchronous dominant episode of Archaean lode‐gold mineralization throughout the Yilgarn Block.  相似文献   
6.
The Narryer Gneiss Complex of the Yilgarn Block is a key segment of the Western Australian Precambrian Shield. It is a regional granulite facies terrain comprised of predominantly quartzo-feldspathic gneisses derived from granitic intrusions c. 3.6–3.4 Ga old. Granulite facies metamorphism occurred c. 3.3 Ga ago, and conditions of 750–850°C and 7–10 kbar are estimated for the Mukalo Creek Area (MCA) near Errabiddy in the north. The P–T path of the MCA has been derived from metamorphic assemblages in younger rocks that intruded the gneisses during at least three subsequent events, and this path is supported by reaction coronas in the older gneisses. There is no evidence for uplift immediately following peak metamorphism of the MCA, and a period of isobaric cooling is inferred from the pressures recorded in younger rocks. Pressures and temperatures estimated from metadolerites, which intruded the older gneisses during ‘granite–greenstone’tectonism at about 2.6 Ga and during early Proterozoic thrusting show that the Errabiddy area remained in the lower crust, although it was probably reheated during the younger events. Isothermal uplift to upper crustal levels occurred at c. 1.6 Ga ago, and was followed by further deformation and patchy retrogression of high-grade assemblages. The effects of younger deformation, cooling and reheating can be discerned in the older gneisses, but as there has been no pervasive deformation or rehydration, the minerals and microstructures formed during early Archaean granulite facies metamorphism for the most part are retained. The MCA remained in the lower crust for about 1700 Ma following peak metamorphism and some event unrelated to the original metamorphism was required to exhume it. Uplift occurred during development of the Capricorn Orogen, when some 30–35 km were added to the crust beneath the Errabiddy area. The recognition of early Proterozoic thrusting, plus crustal thickening, suggests that the Capricorn Orogen is a belt of regional compression which resulted from convergence of the Yilgarn and Pilbara Cratons.  相似文献   
7.
The Laverton region, located in the eastern Yilgarn Craton (EYC) Western Australia, is second only to the Kalgoorlie region for gold endowment. The integration of high-density, potential-field data, regional- and camp-scale seismic reflection data, regional- and mine-scale structural analysis, and geochronologically-constrained stratigraphy, provided new insights into the 4D architecture and tectonic evolution of Laverton region.  相似文献   
8.
Over the last decade there have been significant advances in our understanding of the stratigraphy, magmatism, deformation, metamorphism and timing of mineralisation, in the eastern Yilgarn Craton (EYC) of Western Australia. The integration of these disciplines has enabled a holistic review of the tectonic history of the EYC which favours a paraautochthonous tectonic model.  相似文献   
9.
The Junction gold deposit, in Western Australia, is an orogenic gold deposit hosted by a differentiated, iron‐rich, tholeiitic dolerite sill. Petrographic, microthermometric and laser Raman microprobe analyses of fluid inclusions from the Junction deposit indicate that three different vein systems formed at three distinct periods of geological time, and host four fluid‐inclusion populations with a wide range of compositions in the H2O–CO2–CH4–NaCl ± CaCl2 system. Pre‐shearing, pre‐gold, molybdenite‐bearing quartz veins host fluid inclusions that are characterised by relatively consistent phase ratios comprising H2O–CO2–CH4 ± halite. Microthermometry suggests that these veins precipitated when a highly saline, >340°C fluid mixed with a less saline ≥150°C fluid. The syn‐gold mineralisation event is hosted within the Junction shear zone and is associated with extensive quartz‐calcite ± albite ± chlorite ± pyrrhotite veining. Fluid‐inclusion analyses indicate that gold deposition occurred during the unmixing of a 400°C, moderately saline, H2O–CO2 ± CH4 fluid at pressures between 70 MPa and 440 MPa. Post‐gold quartz‐calcite‐biotite‐pyrrhotite veins occupy normal fault sets that slightly offset the Junction shear zone. Fluid inclusions in these veins are predominantly vapour rich, with CO2?CH4. Homogenisation temperatures indicate that the post‐gold quartz veins precipitated from a 310 ± 30°C fluid. Finally, late secondary fluid inclusions show that a <200°C, highly saline, H2O–CaCl2–NaCl–bearing fluid percolated along microfractures late in the deposit's history, but did not form any notable vein type. Raman spectroscopy supports the microthermometric data and reveals that CH4–bearing fluid inclusions occur in syn‐gold quartz grains found almost exclusively at the vein margin, whereas CO2–bearing fluid inclusions occur in quartz grains that are found toward the centre of the veins. The zonation of CO2:CH4 ratios, with respect to the location of fluid inclusions within the syn‐gold quartz veins, suggest that the CH4 did not travel as part of the auriferous fluid. Fluid unmixing and post‐entrapment alteration of the syn‐gold fluid inclusions are known to have occurred, but cannot adequately account for the relatively ordered zonation of CO2:CH4 ratios. Instead, the late introduction of a CH4–rich fluid into the Junction shear zone appears more likely. Alternatively, the process of CO2 reduction to CH4 is a viable and plausible explanation that fits the available data. The CH4–bearing fluid inclusions occur almost exclusively at the margin of the syn‐gold quartz veins within the zone of high‐grade gold mineralisation because this is where all the criteria needed to reduce CO2 to CH4 were satisfied in the Junction deposit.  相似文献   
10.
Carbonate alteration at the Mulgarrie gold mine in the Eastern Goldfields of Western Australia, is represented by porphyroblasts, veins and pervasive, texturally destructive, carbonatisation. Two foliations, S1M and S2M, were produced by two separate deformation events at the mine‐scale, D1M and D2M. D1M and D2M both occurred in response to regional D2 tectonism. Carbonate alteration was the product of two separate episodes of fluid ingress: the earlier produced magnesite and the latter Fe‐dolomite. Both periods of carbonate alteration occurred pre‐ to early syn‐D2M, when mafic to ultramafic komatiitic rocks reacted with fluids that moved along regional faults and pre‐date the alteration associated with regional peak metamorphism. Gold at Mulgarrie overprints pre‐ and late syn‐D2 quartz veins in zones of massive carbonate alteration, suggesting it has a late‐ to post‐D2 timing. This late timing agrees with the generally accepted syn‐D3 (and younger) age for gold mineralisation in the Eastern Goldfields. We suggest that carbonate alteration at Mulgarrie is not a product of the hydrothermal event responsible for the gold mineralisation. Rather, the different relative timing of magnesite, Fe‐dolomite and gold indicates there were two carbonate‐producing fluid systems and a fluid transporting the gold overprinted these. Similarly, early carbonate alteration may play a role in localising auriferous vein deposits throughout the Yilgarn and other Archaean cratons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号