首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   6篇
  国内免费   36篇
地球物理   9篇
地质学   67篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   5篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有76条查询结果,搜索用时 468 毫秒
1.
2.
The method of smoothed particle hydrodynamics (SPH) has recently been applied to computational geomechanics and has been shown to be a powerful alternative to the standard numerical method, that is, the finite element method, for handling large deformation and post‐failure of geomaterials. However, very few studies apply the SPH method to model saturated or submerged soil problems. Our recent studies of this matter revealed that significant errors may be made if the gradient of the pore‐water pressure is handled using the standard SPH formulation. To overcome this problem and to enhance the SPH applications to computational geomechanics, this article proposes a general SPH formulation, which can be applied straightforwardly to dry and saturated soils. For simplicity, the current work assumes hydrostatic pore‐water pressure. It is shown that the proposed formulation can remove the numerical error mentioned earlier. Moreover, this formulation automatically satisfies the dynamic boundary conditions at a submerged ground surface, thereby saving computational cost. Discussions on the applications of the standard and new SPH formulations are also given through some numerical tests. Furthermore, techniques to obtain the correct SPH solution are also proposed and discussed throughout. As an application of the proposed method, the effect of the dilatancy angle on the failure mechanism of a two‐sided embankment subjected to a high groundwater table is presented and compared with that of other solutions. Finally, the proposed formulation can be considered a basic formulation for further developments of SPH for saturated soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
In this paper, there is presented an elastoplastic constitutive model to predict sandy soils behavior under monotonic and cyclic loadings. This model is based on an existing model (Cambou‐Jafari‐Sidoroff) that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule used in the deviatoric mechanism is non‐associated and a mixed hardening law controls the evolution of the yield surface. In this research the critical state surface and history surface, which separates the virgin and cyclic states in stress space, are defined. Kinematic hardening modulus and stress–dilatancy law for monotonic and cyclic loadings are effectively modified. With taking hardening modulus as a function of deviatoric and volumetric plastic strain and with defining the history surface and stress reversal, the model has the ability to predict the sandy soils' behavior. All of the model parameters have clear physical meanings and can be determined from usual laboratory tests. In order to validate the model, the results of homogeneous tests on Hostun and Toyoura sands are used. The results of validation show a good capability of the proposed model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
4.
The paper presents a strainhardening constitutive model for unsaturated soil behaviour based on energy conjugated stress variables in the framework of superposed continua. The proposed constitutive law deals with hydro‐mechanical coupling phenomena. The main purpose is to develop within a consistent framework a model that can deal with possible mechanical instabilities occurring in partially saturated materials. The loss of capillary effects during wetting processes can, in fact, play a central role in unstable processes. Therefore, it will be shown that the bonding effects due to surface tensions can be described in a mathematical framework similar to that employed for bonded geomaterials to model weathering or diagenesis effects, either mechanically or chemically induced. The results of several simulations of common laboratory tests on partially saturated soil specimens are shown. The calculated behaviour appears to be in good qualitative agreement with that observed in the laboratory. In particular it is shown that volumetric collapse phenomena due to hydraulic debonding effects can be successfully described by the model. Finally, it will be highlighted the ability of the model to naturally capture the transition to a fully saturated condition and to deal with possible mechanical instabilities in the unsaturated regime. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
5.
刘扬  王明洋  李杰 《岩土力学》2014,35(4):1056-1062
盾构隧道衬砌由于各种类型接头的存在而与整体式衬砌的力学特性存在较大差异。将盾构隧道衬砌结构看作由弹塑性铰链连接的刚性管片组成,考虑围岩介质的黏弹性,提出了爆炸地震波作用下盾构隧道动力分析的简化计算方法。采用该方法对南京地铁盾构段典型横断面进行了动力分析,研究了爆炸地震波入射角度、围岩介质特性及管片厚度对结构受力与变形的影响规律。分析结果表明:波入射角度对盾构隧道有很大影响,斜入射时结构的动力响应要大于垂直入射时结构的动力响应;围岩介质等级越高,围岩对隧道结构的约束越强,隧道的抗爆性能越好;管片厚度的增大会增大结构的内力,合理设置管片厚度有利于提高盾构隧道抗爆性能。  相似文献   
6.
An analytical model on the general behaviour of a tunnel head, reinforced by finite length bolts is proposed. This model is based on the homogenization method and spherical symmetry assumption. Despite its simplicity, and in consequence its limits of validity, it does allow a quick estimation of the key design parameters: frontal displacement, extension of decompressed zone, ground stresses and bolt tension, and constitutes thereby a very useful and handy tool for design engineers. In particular, the influence of the reinforcement length, as well as other important design parameters, are studied by the proposed model. The charts resulting from the parametric studies are directly applicable. Otherwise, the comparison to a 3D numerical model is also presented in this paper. The first results provide the validation of the analytical solution, at least in terms of average extrusion movements. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
7.
梁发云  陈海兵 《岩土力学》2011,32(Z1):61-65
针对刚性筏板下群桩基础优化设计问题进行分析,通过改变桩长分布来调整各桩的荷载分担,群桩分析采用基于弹性理论的积分方程方法,并通过cut-off方法来反映桩的弹塑性特性,实现群桩基础的弹塑性优化分析,改进了常规弹性分析方法的缺陷。算例分析表明,随着外荷载的不断增加,角桩首先达到极限荷载,对角桩超出极限荷载的部分进行重新分布,继而使得边桩逐渐达到极限承载状态,继续加载直至内桩也达到极限承载状态,从而引起桩筏基础的整体破坏。采用cut-off方法可以改进基础变刚度优化设计,使之与实际情况更为吻合。  相似文献   
8.
This study presents a thermo-hydro-mechanical (THM) model of unsaturated soils using isogeometric analysis (IGA). The framework employs Bézier extraction to connect IGA to the conventional finite element analysis (FEA), featuring the current study as one of the first attempts to develop an IGA-FEA framework for solving THM problems in unsaturated soils. IGA offers higher levels of interelement continuity making it an attractive method for solving highly nonlinear problems. The governing equations of linear momentum, mass, and energy balance are coupled based on the averaging procedure within the hybrid mixture theory. The Drucker-Prager yield surface is used to limit the modified effective stress where the model follows small strain, quasi-static loading conditions. Temperature dependency of the surface tension is implemented in the soil-water retention curve. Nonuniform rational B-splines (NURBS) basis functions are used in the standard Galerkin method and weak formulations of the balance equations. Displacement, capillary pressure, gas pressure, and temperature are four independent quantities that are approximated by NURBS in spatial discretization. The framework is used to simulate strain localization in an undrained dense sand subjected to plane strain biaxial compression under different temperatures and displacement velocities. Results show that an increase in the displacement rate leads to reduction in the equivalent plastic strain while an increase in the temperature leads to an increase in the equivalent plastic strain. The findings suggest that the proposed IGA-based framework offers a viable alternative for solving THM problems in unsaturated soils.  相似文献   
9.
钢筋沥青隔震层施工简便、造价低廉,且具有较好的隔震性能,解决了广大村镇地区低矮房屋抗震能力普遍不足的缺点。但其工程设计方法尚不完善,如何进行隔震层弹塑性设计才能达到最好的隔震效果,目前尚不明确。本文介绍了钢筋沥青隔震层的构造,推导了隔震层竖向钢筋不发生第一类失稳和第二类失稳的条件,探讨了各设计参数的取值范围,提出了一种弹塑性设计思路:二阶段试算法。为便于该设计方法的应用,本文对一栋两层的砌体结构房屋进行了工程设计,验证该设计方法的适用性和可靠性。研究表明:合理使用该方法进行设计,水平减震系数可在0.5以下。  相似文献   
10.
This paper presents a new generalized effective stress model, referred to as MIT-S1, which is capable of predicting the rate independent, effective stress–strain–strength behaviour of uncemented soils over a wide range of confining pressures and densities. Freshly deposited sand specimens compressed from different initial formation densities approach a unique condition at high stress levels, referred to as the limiting compression curve (LCC), which is linear in a double logarithmic void ratio, e, mean effective stress space, p′. The model describes irrecoverable, plastic strains which develop throughout first loading using a simple four-parameter elasto-plastic model. The shear stiffness and strength properties of sands in the LCC regime can be normalized by the effective confining pressure and hence can be unified qualitatively, with the well-known behaviour of clays that are normally consolidated from a slurry condition along the virgin consolidation line (VCL). At lower confining pressures, the model characterizes the effects of formation density and fabric on the shear behaviour of sands through a number of key features: (a) void ratio is treated as a separate state variable in the incrementally linearized elasto-plastic formulation: (b) kinematic hardening describing the evolution of anisotropic stress–strain properties: (c) an aperture hardening function controls dilation as a function of ‘formation density’; and (d) the use of a single lemniscate-shaped yield surface with non-associated flow. These features enable the model to describe characteristic transitions from dilative to contractive shear response of sands as the confining pressure increases. This paper summarizes the procedures used to select input parameters for clays and sands, while a companion paper compares model predictions with measured data to illustrate the model capability for describing the shear behaviour of clays and sands. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号