首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
适用于砂土循环加载分析的边界面塑性模型   总被引:1,自引:0,他引:1  
董建勋  刘海笑  李洲 《岩土力学》2019,40(2):684-692
基于临界状态土力学框架,建立了一个适用于砂土排水循环加载的边界面塑性模型。采用了考虑虚拟峰值应力比的偏应变硬化准则,初始加载阶段应力点位于边界面上,反向加载阶段以历史最大屈服面作为边界面,同时实现了对密砂软化现象的模拟和对历史所受最大应力的记忆。边界面采用修正的椭圆形,引入考虑密度与应力水平的状态相关剪胀函数,采用非相关联流动法则和以应力反向点作为映射中心的径向映射准则。模型仅有10个参数,通过常规三轴试验即可确定,并且使用一套参数可以模拟不同围压、密度的单调和循环加载情况。分别对饱和砂土的单调、循环排水三轴试验进行模拟,结果表明,该模型能够合理地反映饱和砂土排水条件下的应力-应变特性。  相似文献   

2.
The constitutive model of sands is proposed to describe the characteristics of plastic behaviour for cyclic loadings. A non-associated flow rule is used and both yield function and plastic potential are generalized forms of the Modified Cam clay model. The hardening parameter is represented by the plastic work related to different portions of volumetric and deviatoric changes. The boundary surface is employed to describe the plastic strain within the yield surface. The directional independency of yield condition in triaxial compression and extension tests is extended to that in general stress states. Several drained and undrained cyclic tests are predicted and the comparison is made with experimental results. The proposed model is capable of representing the monotonic and cyclic behaviours of sands with reasonable accuracy. The simulation is performed for both included and excluded membrane penetration effects and it is suggested that the membrane penetration causes the significant influences on the results of undrained cyclic tests.  相似文献   

3.
A large number of constitutive models for geomaterials, such as soils and rocks, have been proposed over the last three decades. Those models have been implemented into computer codes and have been successfully used to solve practical engineering problems particularly under monotonic loading conditions. Compared with the models for monotonic loadings, more improvements for cyclic models are necessary in order to obtain more accurate predictions for the dynamic behavior of geomaterials, e.g., the behavior during earthquakes. A cyclic elastoplastic model has been developed in this study for sandy soils; it is based on the kinematical hardening rule with a yield function that includes the changes in the stress ratio and the mean effective stress considering the degradation of the yield surface. From a simulation with the present model, it has been found that strong non-associativity leads to a large decrease in the mean effective stress during cyclic deformations under undrained conditions, while the model with the associated flow rule does not. This result is quite important because the mean effective stress becomes almost zero at the state of full liquefaction. Compared with the experimental results, the model can accurately reproduce the cyclic behavior of soil.  相似文献   

4.
考虑循环载荷下饱和黏土软化的损伤边界面模型研究   总被引:1,自引:0,他引:1  
胡存  刘海笑  黄维 《岩土力学》2012,33(2):459-466
研究表明,循环载荷作用下饱和黏土将发生软化,其机制主要有两个:一是孔压的积累;二是土体原有结构的不断损伤和新结构的不断重塑。针对上述机制,基于广义各向同性硬化准则建立了考虑饱和黏土循环软化的损伤单面模型。该模型在有效应力空间中引入损伤变量,表征土体结构的损伤和重塑程度,在连续的循环加载下,损伤不断累积,边界面则随着损伤的累积不断收缩,以模拟饱和黏土刚度和强度的软化;以应力反向点作为边界面的广义各向同性硬化中心和映射法则的映射中心,灵活地选择塑性模量的插值公式以模拟塑性变形和孔压的累积以及应力-应变的滞回特性。应用该模型对不排水循环三轴试验进行模拟,并且考查了循环周次、循环应力水平和固结历史对饱和黏土循环软化特性的影响,并与相关试验比较,验证了模型的有效性。  相似文献   

5.
The cyclic behaviours of embedded offshore structures under different cyclic loading levels are related to the cyclic shakedown and degradation of the surrounding soils. In the present study, a damage-dependent bounding-surface model based on a newly proposed hardening rule was developed to predict the cyclic shakedown and degradation of saturated clay and the effect of the initial anisotropic stress state. By extending the Masing’s rule to the bounding-surface plasticity theory, the stress reversal point is taken as the generalised homological centre of the bounding surface. With movement of the generalised homological centre, at lower stress amplitudes, the cyclic process ends at a steady state, and cyclic shakedown is reached. At higher stress amplitudes, a damage parameter related to the accumulated deviatoric plastic strain is incorporated into the form of the bounding surface, which is hence able to contract to model degradations in stiffness and strength. To take into account the effects of initial anisotropic conditions on the cyclic behaviour of soils, an initial anisotropic tensor is introduced in the bounding surface. The developed model is validated through undrained isotropic and anisotropic cyclic triaxial tests in normally consolidated and overconsolidated saturated clay under both one-way and two-way loadings. Both cyclic shakedown and degradation are well reproduced by the model, as is the anisotropy effect induced by the initial anisotropic consolidation process.  相似文献   

6.
A new elastoplastic model called loading memory surface based on the critical state concept and the multi‐surface framework is proposed for geomaterials. The model uses a hypoelastic formulation and two plastic mechanisms. The formulations of the model are made in three‐dimensional stress–strain space and work under both monotonic and cyclic loadings. A newly introduced formalism makes it possible to obtain the cyclic response directly from the monotonic loading one. This formalism gives a three‐dimensional generalization of the well‐known Masing rule. The model has been validated against test results of Hostun sand under several conditions: monotonic and cyclic, drained and undrained, tests in compression and in extension, and at different confining pressures and different densities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
8.
This paper presents a kinematic hardening model for describing some important features of natural stiff clays under cyclic loading conditions, such as closed hysteretic loops, smooth transition from the elastic behavior to the elastoplastic one and changes of the compression slope with loading/unloading loops. The model includes two yield surfaces, an inner surface and a bounding surface. A non-associated flow rule and a kinematic hardening law are proposed for the inner surface. The adopted hardening law enables the plastic modulus to vary smoothly when the kinematic yield surface approaches the bounding surface and ensures at the same time the non-intersection of the two yield surfaces. Furthermore, the first loading, unloading, and reloading stages are treated differently by applying distinct hardening parameters. The main feature of the model is that its constitutive equations can be simply formulated based on the consistency condition for the inner yield surface based on the proposed kinematic hardening law; thereby, this model can be easily implemented in a finite element code using a classic stress integration scheme as for the modified Cam Clay model. The simulation results on the Boom Clay, natural stiff clay, have revealed the relevance of the model: a good agreement has been obtained between simulations and the experimental results from the tests with different stress paths under cyclic loading conditions. In particular, the model can satisfactorily describe the complex case of oedometric conditions where the deviator stress is positive upon loading (compression) but can become negative upon unloading (extension).  相似文献   

9.
考虑循环软化特性的饱和软土弹塑性本构关系研究   总被引:1,自引:0,他引:1  
程星磊  王建华 《岩土力学》2015,36(3):786-794
将软化指数关系与非等向硬化模量场理论相结合,研究了可描述循环荷载作用下饱和软土软化特性的增量弹塑性模型。该模型借助硬化模量的插值和映射中心的移动,在偏应力空间中构造硬化模量的演化规则;通过在弹塑性模量插值函数中引入初始弹塑性模量软化系数,模拟循环荷载作用下软土的刚度软化特性;通过引入硬化模量调整系数,增强循环加载时应力-应变曲线的滞回特性;再通过引入反映应变累积速率和大小的模型参数,描述循环加载时软土的应变累积特性。利用Idriss提出的指数关系式近似拟合软化系数随应力循环次数的变化关系,并通过引入循环应力参数建立了循环软化系数与静应力水平和循环应力水平的关系。阐述了确定模型参数的方法,并利用模型预测了相关试验结果,通过预测结果与试验结果的对比,验证了该模型描述循环荷载作用下软土软化特性的可行性。  相似文献   

10.
The present paper deals with the extension of a cap model in order to describe the material behavior of partially saturated soils, in particular, of partially saturated sands and silts. The soil model is formulated in terms of two stress state variables, using net stress and matric suction and, alternatively, the average soil skeleton stress and suction, the latter playing the role of a stress‐like plastic internal variable. The yield surface, consisting of a shear failure surface and a hardening cap surface, the plastic potentials for the non‐associated flow rule and the hardening law for the cap are extended by taking into account the effects of matric suction on the material behavior. Furthermore, the third invariant of the deviatoric stress tensor is taken into account in the formulation of the yield surfaces. The developed model is validated by the numerical simulation of an extensive series of suction controlled tests for a silty sand, which were conducted at different constant values of suction. Although both versions of the soil model yield identical results for stress paths at constant values of matric suction, differences are encountered for stress paths involving wetting. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The proposed general analytical model describes the anisotropic, elasto-plastic, path-dependent, stress-strain-strength properties of inviscid saturated clays under undrained loading conditions. The model combines properties of isotropic and kinematic plasticity by introducing the concept of a field of plastic moduli which is defined in stress space by the relative configuration of yield surfaces. For any loading (or unloading) history, the instantaneous configuration is determined by calculating the translation and contraction (or expansion) of each yield surface. The stress-strain behaviour of clays can thus be determined for complex loading paths and in particular for cyclic loadings. The stress-strain relationships are provided for use in finite element analyses. The model parameters required to characterize the behaviour of any given clay can be derived entirely from conventional triaxial or simple shear soil test results. The model's extreme versatility is demonstrated by using it to formulate the behaviour of the Drammen clay under both monotonic and cyclic loading conditions. The parameters are determined by using solely the results from monotonic and cyclic strain-controlled simple shear experimental tests, and the model's accuracy is evaluated by applying it to predict the results of other tests such as (1) cyclic stress-controlled simple shear tests, (2) monotonic triaxial loading compression and unloading extension tests, and (3) cyclic stress- and strain-controlled triaxial tests on, this same clay. The theoretical predictions are found to agree extremely well with the experimental test results.  相似文献   

12.
This paper describes a modified elasto‐plasticity damage model to capture monotonic and cyclic behavior of the interface between a geotextile and gravelly soil. New damage variable and shear strength criterion are introduced on the basis of test observations. The formulations of the modified model are obtained by extending those of the original interface model. The model parameters with physical meaning are easily determined from a group of cyclic shear tests and a confining compression test. The model predictions are compared with the results of a series of direct shear tests and large‐scale pullout tests. The comparison results demonstrate that the model accurately describes the monotonic and cyclic stress–strain relationship of the interface between a geotextile and gravelly soil while capturing new characteristics: (1) the strength that is nonlinearly dependent on the normal stress; (2) significant shear strain‐softening; (3) the comprehensive volumetric strain response with dependency on the shear direction; and (4) the evolution of behavior associated with the changes in the physical state that includes the geotextile damage. This model is used in a finite element analysis of pullout tests, indicating that the tensile modulus of a geotextile has a significant effect on the response of the geotextile–gravel system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a constitutive model for describing the stress-strain response of sands under cyclic loading. The model, formulated using the critical state theory within the bounding surface plasticity framework, is an upgraded version of an existing model developed for monotonic behaviour of cohesionless sands. With modification of the hardening law, plastic volumetric strain increment and unloading plastic modulus, the original model was modified to simulate cyclic loading. The proposed model was validated against triaxial cyclic loading tests for Fuji River sand, Toyoura sand and Nigata sand. Comparison between the measured and predicted results suggests that the proposed modified model can capture the main features of cohesionless sands under drained and undrained cyclic loading.  相似文献   

14.
Chen  Ren-Peng  Zhu  Shu  Hong  Peng-Yun  Cheng  Wei  Cui  Yu-Jun 《Acta Geotechnica》2019,14(2):279-293

This paper presents a two-surface plasticity model for describing some important features of saturated clay under cyclic loading conditions, such as closed hysteresis loops, cyclic shakedown and degradation, and different stress–strain relations for two-way loading. The model, namely ACC-2-C, is based on the elastoplastic model ACC-2 (an adapted Modified Cam Clay model with two yield surfaces) developed by Hong et al. (Acta Geotech 11(4):871–885, 2015). The small-strain nonlinearity concept is adopted to achieve the nonlinear characteristics of clay during unloading–loading stage. The new hardening law related to accumulated deviatoric plastic strain is proposed for the inner surface to describe the cyclic shakedown and degradation. Following the advantages of the ACC-2 model, the constitutive equations are simply formulated based on the consistency condition for the inner yield surface. The model is conveniently implemented in a finite element code using a stress integration scheme similar to the Modified Cam Clay model. The simulation results are highly consistent with experimental data from drained and undrained isotropic cyclic triaxial tests in normally consolidated saturated clay under both one-way and two-way loadings.

  相似文献   

15.
Predicting flow liquefaction,a constitutive model approach   总被引:1,自引:1,他引:0  
In this paper, flow liquefaction criterion for contractive loose sands is analytically extracted based on the fundamental definition of flow liquefaction. In order to obtain the closed form of this criterion, Dafalias–Manzari constitutive model is employed; so the stress ratio at the onset of flow liquefaction is presented as a function of model parameters, state parameter and void ratio. Flow liquefaction line, as a graphical form of suggested criterion in stress space, shows that the peak points of undrained stress paths with same void ratios are not necessarily in a straight line. In order to validate the reliability of proposed flow liquefaction line to predict the onset of instability, it has been compared with the results of experimental tests performed on Toyoura, Ottawa and Leighton Buzzard sands. The verification results show that the present criterion can satisfactorily predict the onset of flow liquefaction in monotonic and cyclic undrained tests of saturated sands as well as the structural collapse in constant deviatoric stress tests of loose dry sands.  相似文献   

16.
Hu  Nian  Yu  Hai-Sui  Yang  Dun-Shun  Zhuang  Pei-Zhi 《Acta Geotechnica》2020,15(5):1125-1151

This paper presents a fabric tensor-based bounding surface model accounting for anisotropic behaviour (e.g. the dependency of peak strength on loading direction and non-coaxial deformation) of granular materials. This model is developed based on a well-calibrated isotropic bounding surface model. The yield surface is modified by incorporating the back stress which is proportional to a contact normal-based fabric tensor for characterising fabric anisotropy. The evolution law of the fabric tensor, which is dependent on both rates of the stress ratio and the plastic strain, rules that the material fabric tends to align with the loading direction and evolves towards a unique critical state fabric tensor under monotonic shearing. The incorporation of the evolution law leads to a rotational hardening of the yield surface. The anisotropic critical state is assumed to be independent of the initial values of void ratio and fabric tensor. The critical state fabric tensor has the same intermediate stress ratio (i.e. b value) and principal directions as the critical state stress tensor. A non-associated flow rule in the deviatoric plane is adopted, which is able to predict the non-coaxial flow naturally. The stress–strain relation and fabric evolution of model predictions show a satisfactory agreement with DEM simulation results under monotonic shearing with different loading directions. The model is also validated by comparing with laboratory test results of Leighton Buzzard sand and Toyoura sand under various loading paths. The comparison results demonstrate encouraging applicability of the model for predicting the anisotropic behaviour of granular materials.

  相似文献   

17.
基于Hardin曲线的土体边界面本构模型在ADINA软件中的实现   总被引:1,自引:0,他引:1  
为了提出一种适合于岩土地震数值模拟的土体本构模型,基于土体动应力-应变关系的Hardin曲线及其在非等幅往返荷载下的Pyke修正,采用von Mises准则在偏应力平面上构造边界面,以反向加载点和当前应力点的连线在边界面上投影的比例作为硬化参数,推导了塑性硬化模量并给出该边界面本构的具体增量表述。在有限元软件ADINA中通过自定义材料的二次开发实现了该本构模型,并利用动三轴试验对该本构模型进行了验证。数值模拟与试验结果的对比表明,本构模型能如实反映土体的应力-应变关系。针对实际工程场地的地震反应,应用边界面本构模型在ADINA中进行了二维数值模拟,与SHAKE91的计算结果进行了对比,说明了该本构模型应用于岩土地震工程问题的合理性。  相似文献   

18.
基于临界状态土力学框架,建立了一个适用于往返循环荷载作用的砂土边界面本构模型。采用无纯弹性域假设,认为受到反向荷载的瞬时土体就产生塑性变形,砂土的弹性区域退化为一个点。屈服面为倒子弹头型,由于砂土孔隙比与压力之间不存在惟一对应的关系,使得屈服面大小无法与体积应变直接耦合,故采用塑性偏应变而不是剑桥模型那种塑性体应变作为硬化参数。流动法则采用加入状态参数的修正的Rowe应力剪胀关系,体现了依赖状态的剪胀思想。屈服面大小的比值 反映了塑性模量的演化,并推导了 的表达式。只用1套参数,该模型就能合理地模拟砂土在不同密度和固结压力下循环荷载的应力-应变关系曲线。  相似文献   

19.
The aim of this paper is to extend the generalized plasticity state parameter‐based model presented in part 1 to reproduce the hydro‐mechanical behavior of unsaturated soils. The proposed model is based on two pairs of stress–strain variables and a suitable hardening law taking into account the bonding—debonding effect of suction and degree of saturation. A generalized state parameter for unsaturated state is proposed to reproduce soil behavior using a single set of material parameters. Generalized plasticity gives a suitable framework to reproduce not only monotonic stress path but also cyclic behavior. The hydraulic hysteresis during a drying—wetting cycle and the void ratio effect on the hydraulic behavior is introduced. Comparison between model simulations and a series of experimental data available, both cohesive and granular, are given to illustrate the accuracy of the enhanced generalized plasticity equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Foundation soils are often under non-proportional cyclic loadings. The deformation behaviour and the mechanism of non-coaxiality under continuous pure principal stress rotation for clays are not clearly investigated up to now. In order to study the effect of pure principal stress rotation, a series of cyclic undrained tests on Shanghai soft clay subjected to cyclic rotation of principal stress directions keeping the deviatoric stress constant under the pure rotation condition were conducted using hollow cylinder apparatus. Based on this, the evolutions of excess pore pressure and strains during cyclic loading were investigated, together with the effects of the intermediate principal stress parameter and the deviatoric stress level on stress–strain stiffness and non-coaxiality. The result can provide an experimental basis for constitutive modelling of clays describing the behaviour under non-proportional loadings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号