首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A two-surface plasticity model for stiff clay   总被引:1,自引:1,他引:0  
This paper presents a constitutive model for describing some important features of the behavior of natural stiff clay evidenced experimentally such as the limited elastic zone, the presence of strain hardening and softening, and the smooth transition from elastic behavior to a plastic one. The model, namely ACC-2, is an adapted Modified Cam Clay model with two yield surfaces: similarly to bounding surface plasticity theory, an additional yield surface—namely Inner yield surface—was adopted to account for the plastic behavior inside the conventional yield surface. A progressive plastic hardening mechanism was introduced with a combined volumetric-deviatoric hardening law associated with the Inner yield surface, enabling the plastic modulus to vary smoothly during loading paths. The main feature of the proposed model is that its constitutive equations can be simply formulated based on the consistency condition for the Inner yield surface, so that it can be efficiently implemented in a finite element code using a stress integration scheme similar to that of the Modified Cam Clay model. Furthermore, it is proved to be an appropriate model for natural stiff clay: the simulations of a set of tests along different mechanical loading paths on natural Boom Clay show good agreement with the experimental results.  相似文献   

2.
Performance of constitutive models in predicting behavior of remolded clay   总被引:2,自引:2,他引:0  
The performance of several soil constitutive models was evaluated by comparing experimental results and simulated behavior of a medium plasticity clay. Input parameters for the soil constitutive models were obtained from triaxial compression and extension tests on normally and overconsolidated medium plasticity clay. The soil models employed for this study were the Cam Clay, Modified Cam Clay, 3-SKH, and S-CLAY1 models. In order to investigate the influence of some of the input parameters on the performance of the models, sensitivity analyses were also performed. The comparisons demonstrate that the Cam Clay model was able to predict the normally consolidated compressive behavior of medium plasticity clay. Both 3-SKH and Cam Clay models were able to produce acceptable predictions for stress?Cstrain and stress path behavior for overconsolidated compression of the soil. The 3-SKH model did not perform satisfactorily for predicting pore pressure variations, while the Cam Clay model demonstrated fairly acceptable predictions. For the normally consolidated reduced extension test, the Modified Cam Clay and S-CLAY1 models performed better than the Cam Clay and 3-SKH models in predicting the stress?Cstrain curve, pore pressure variations, and stress path.  相似文献   

3.
This paper presents a three-dimensional constitutive model for natural clay that includes creep, anisotropy and structure, as well as a theoretical means to estimate the range for anisotropy- and structure-related parameters, as needed for parameter optimisation. Creep-SCLAY1S is an extension of the Creep-SCLAY1 model proposed by Sivasithamparam et al. (Comput Geotech 69:46–57, 2015) which includes the effects of bonding and destructuration. The model needs 14 model parameters, of which five are similar to those used in the modified Cam–Clay model. A method is developed to quantify the range for the three parameters related to structure and anisotropy that cannot be derived directly from experimental data. The theoretically derived range compares favourably with the values found in the literature. As a result, the model now can be used with more confidence, enabling sensitivity analysis and systematic parameter derivation with optimisation techniques.  相似文献   

4.
Experimental results and simulated behavior of a medium plasticity clay were compared to investigate the performance of an advanced soil constitutive model. The soil model employed for this study was the 3-SKH model. The performance of this model was compared to the performance of two other critical state models; the Cam Clay (CC) and Modified Cam Clay (MCC) models. In addition, the influences of some of the input parameters on the performance of the 3-SKH model were investigated by performing sensitivity analyses. The comparisons demonstrated that the CC model was able to predict normally consolidated compressive behavior of the remolded medium plasticity clay. The compression behavior of overconsolidated clay was better captured by both the 3-SKH and CC models. For extension behavior of the normally consolidated samples, the MCC model performed better than the CC and 3-SKH models in predicting the stress path. The 3-SKH model was found to be very sensitive to varying the exponent in the hardening function. In particular, a difference between the evaluated values as small as 0.01 had a noticeable effect on the predicted stress–strain values for the overconsolidated compression and extension samples.  相似文献   

5.
The cyclic behaviours of embedded offshore structures under different cyclic loading levels are related to the cyclic shakedown and degradation of the surrounding soils. In the present study, a damage-dependent bounding-surface model based on a newly proposed hardening rule was developed to predict the cyclic shakedown and degradation of saturated clay and the effect of the initial anisotropic stress state. By extending the Masing’s rule to the bounding-surface plasticity theory, the stress reversal point is taken as the generalised homological centre of the bounding surface. With movement of the generalised homological centre, at lower stress amplitudes, the cyclic process ends at a steady state, and cyclic shakedown is reached. At higher stress amplitudes, a damage parameter related to the accumulated deviatoric plastic strain is incorporated into the form of the bounding surface, which is hence able to contract to model degradations in stiffness and strength. To take into account the effects of initial anisotropic conditions on the cyclic behaviour of soils, an initial anisotropic tensor is introduced in the bounding surface. The developed model is validated through undrained isotropic and anisotropic cyclic triaxial tests in normally consolidated and overconsolidated saturated clay under both one-way and two-way loadings. Both cyclic shakedown and degradation are well reproduced by the model, as is the anisotropy effect induced by the initial anisotropic consolidation process.  相似文献   

6.
A non-associated constitutive critical state model is proposed. The yield surface is that of Modified Cam Clay, whilst the plastic potential is an empirical function. The yield and plastic potential surfaces in the octahedral plane vary from circular at low stress ratios, to the Matsuoka-Nakai surface at failure. Assessment of the model has been by comparison with laboratory tests on soft clay. Further validation has been by predicting centrifuge model behaviour using a modified form of the CRISP finite element program. Comparisons of the numerical analyses, using the proposed model and Modified Cam Clay, show improved correlations with the experimental data. ©  相似文献   

7.
Many interpretations of small-strain experiments indicate a non-linear dependence of soil stiffness on pressure. This shows that small-strain stiffness can be expressed as a power function of the mean effective stress rather than as a linear function of stress. Many cases in the field show the importance of these behaviours to load–deformation prediction in a soil-structure interaction problem. This paper presents a numerical implementation and validation of non-linear pressure-dependent stiffness in a hyperplasticity model using a strain-driven forward-Euler integration scheme. The kinematic hardening function was incorporated into a finite number of multiple-yield surfaces of Modified Cam Clay to characterise small-strain stiffness and accommodate smooth transition of stiffness corresponding to different loading conditions and stress histories. Experimental results of current state and loading history dependence in overconsolidated clay are compared to the model prediction.  相似文献   

8.
基于试验基础上建立的经典弹塑性模型--剑桥模型能够准确描述正常固结土的应力-应变关系。当土体的应力历史上经历过卸载或受到循环交变荷载作用即进入超固结状态,它作为土的应力历史的反映,相比正常固结土受力特性有着显著的差异。为研究超固结因素对土体加载特性的影响,在引入能考虑超固结状态影响的下负荷面剑桥模型后,通过三轴压缩和剪切试验对处于超固结状态下土体的受力特性进行了对比分析,并对循环剪切加载下的应力-应变关系以及超固结比的演化规律进行了研究。结果表明,下负荷面剑桥模型能准确反映超固结因素对土体力学特性的影响,相比原状土有着更高的屈服强度。而通过数值模拟自由场地基在地震作用下的动力响应可以看出,超固结因素对地基的动力响应起到了不可忽略的影响,尤其在强震下更需要考虑其影响。在自由场地基地震动力响应基础上,通过对桩柱结构桩-土耦合系统在地震作用下非线性动力响应的模拟对土体非线性以及超固结因素的影响进行了对比研究,研究表明:土体的非线性因素能显著降低结构振动响应中的高频成分,由于土体在交变加载下很快进入超固结状态,相对于剑桥模型,下负荷面剑桥模型在考虑超固结因素后土体的承载性能显著提高,尤其在强震作用下超固结因素带来的影响更加明显,因此,建议对桩基结构物地震响应研究考虑超固结因素影响,以提高桩基结构物地震响应模拟的精确度和可靠性。  相似文献   

9.
Cheng  Wei  Chen  Ren-peng  Hong  Peng-yun  Cui  Yu-jun  Pereira  Jean-Michel 《Acta Geotechnica》2020,15(10):2741-2755

In thermal-related engineering such as thermal energy structures and nuclear waste disposal, it is essential to well understand volume change and excess pore water pressure buildup of soils under thermal cycles. However, most existing thermo-mechanical models can merely simulate one heating–cooling cycle and fail in capturing accumulation phenomenon due to multiple thermal cycles. In this study, a two-surface elasto-plastic model considering thermal cyclic behavior is proposed. This model is based on the bounding surface plasticity and progressive plasticity by introducing two yield surfaces and two loading yield limits. A dependency law is proposed by linking two loading yield limits with a thermal accumulation parameter nc, allowing the thermal cyclic behavior to be taken into account. Parameter nc controls the evolution rate of the inner loading yield limit approaching the loading yield limit following a thermal loading path. By extending the thermo-hydro-mechanical equations into the elastic–plastic state, the excess pore water pressure buildup of soil due to thermal cycles is also accounted. Then, thermal cycle tests on four fine-grained soils (natural Boom clay, Geneva clay, Bonny silt, and reconstituted Pontida clay) under different OCRs and stresses are simulated and compared. The results show that the proposed model can well describe both strain accumulation phenomenon and excess pore water pressure buildup of fine-grained soils under the effect of thermal cycles.

  相似文献   

10.
This paper presents a generalised constitutive model for destructured, naturally structured and artificially structured clays that extends the Structured Cam Clay (SCC) model. This model is designated as “Modified Structured Cam Clay (MSCC) model”. The influence of structure and destructuring on the mechanical behaviour of clay can be explained by the change in the modified effective stress, which is the sum of the current mean effective stress and the additional mean effective stress due to structure (structure strength). The presence of structure increases the modified mean effective stress and yield surface, enhancing the cohesion, peak strength and stiffness. The destructuring begins when the stress state is on the virgin yield surface. After the failure (peak strength) state, the abrupt destructuring occurs as the soil–cementation structure is crushed; hence the strain softening. The soil structure is completely removed at the critical state when the yield surface becomes identical to the destructured surface. The destructuring law is proposed based on this premise. In the MSCC model, the yield function is the same shape as that of the Modified Cam Clay (MCC) model. A plastic potential is introduced so as to account for the influence of structure on the plastic strain direction for both hardening and softening behaviours. The required model parameters are divided into those describing destructured properties and those describing structured properties. All the parameters have physical meaning and can be simply determined from the conventional triaxial tests. Thus, the MSCC model is a useful tool for geotechnical practitioners. The capability of the model is verified by the test results of destructured, natural structured and artificially structured clays.  相似文献   

11.
In this paper a novel modelling procedure is proposed to estimate whole-life settlements of tolerably mobile sliding foundations. A new kinematic hardening-critical state-state parameter constitutive model, the Memory Surface Hardening model, is implemented in a one-dimensional analysis to predict accumulated vertical settlements under drained lateral cyclic loading. The Memory Surface Hardening model performance is compared with the Modified Cam Clay and Severn-Trent Sand models. The Memory Surface Hardening model is adopted to simulate available experimental data from centrifuge tests to predict the settlement of a sliding foundation at the final stable state (i.e. no further volume changes occur).  相似文献   

12.
The development of a two-surface elastic–plastic bounding surface PY model for cyclic lateral pile motions is described. The kinematic-hardening model is applicable to the analysis of pile foundations subjected to loading with arbitrary azimuths relative to the pile axis. The model realistically captures the hysteretic energy damping associated with dynamic loading of subsea foundations through physically correct plastic mechanisms and provides results consistent with those observed in physical tests including cyclic loading. Its performance is demonstrated in element states of stress and in pile foundation analyses. The development based on the incremental theory of plasticity results in more robust solutions than may be obtained using alternative elastic, variable moduli and deformation plasticity formulations.  相似文献   

13.
This paper presents a novel macroelement for single vertical piles in sand developed within the hypo-plasticity theory, where the incremental nonlinear constitutive equations are defined in terms of generalized forces, displacements and rotations. Inspired from the macroelement for shallow foundations of Salciarini and Tamagnini (Acta Geotech, 4(3):163–176, 2009), the new element adopts the “intergranular displacement” mutuated from Niemunis and Herle (Mech Cohes Frict Mater, 2:279–299, 1997) to reproduce the behavior under cyclic loading. Analytical and numerical strategies are provided to calibrate the macroelement’s parameters. Comparisons with experimental results show the performance of the macroelement that while being simple and computational fast is suitable for finite element calculations and engineering design.  相似文献   

14.
A new procedure to integrate critical state models including Cam–Clay and modified Cam–Clay is proposed here. The proposed procedure makes use of the linearity of the virgin isotropic compression curve and the parallel anisotropic consolidation lines in e–ln p space which are basic features of the formulation of critical state models. Using this algorithm, a unique final stress state may be found as a function of a single unknown for elastoplastic loading. The key equations are given in this article for the Cam–Clay and modified Cam–Clay models. The use of the Newton–Raphson iterative method to minimize residuals and obtain a converged solution is described here. This new algorithm may be applied using the assumptions of linear elasticity or non‐linear elasticity within a given loading step. The new algorithm proposed here is internally consistent and has computational advantages over the current numerical integration procedures. Numerical examples are presented to show the performance of the algorithm as compared to other integration algorithms. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

15.
李潇旋  李涛  李舰  张涛 《岩土力学》2020,41(4):1153-1160
非饱和黏土的结构性能够显著影响其力学特性。基于非饱和土经典模型BBM(Barcelona basic model)和一种可描述循环塑性的硬化法则,引入体积破损率的作为标准土体结构破损的参数,建立了一个描述常吸力下非饱和结构性黏土静态及动态力学特性的弹塑性双面模型。模型在应力空间中包含与重塑非饱和土屈服面几何相似的结构性边界面和加载面,采用径向映射法则和可移动的记忆中心原理,通过结构性边界面和加载面在应力空间中的演化来反映循环加载过程中非饱和结构性黏土的循环塑性特征和结构损伤过程。通过与相关非饱和黏土控制吸力试验数据的比较,表明该模型能够较好地反映静态加载下非饱和结构性黏土的力学特性,而模型预测的循环荷载下的应力?应变特征也具有一定的合理性。  相似文献   

16.
循环荷载下路基红黏土临界应力水平分析   总被引:4,自引:0,他引:4  
根据设计改装的循环动单轴压缩试验,研究不同含水率、不同轴向应力水平、不同循环加载次数、不同应力加载路径条件下路基土的塑性力学行为,并结合shakedown概念,界定了循环动荷载作用下红黏土的安定界限(shakedown limit)和临界应力水平,系统地分析了影响循环动荷载作用下路基土力学行为的因素和永久变形的发展趋势,以及路基土在循环载荷作用下的力学行为发展规律。通过试验结果的分析,把红黏土的塑性变形分为稳定、破坏和临界3个阶段,并按3个阶段划分出可接受状态和不可接受状态,由此确定路基红黏土在循环荷载作用下的临界应力水平为41.8 %。  相似文献   

17.
This paper presents a kinematic hardening model for describing some important features of natural stiff clays under cyclic loading conditions, such as closed hysteretic loops, smooth transition from the elastic behavior to the elastoplastic one and changes of the compression slope with loading/unloading loops. The model includes two yield surfaces, an inner surface and a bounding surface. A non-associated flow rule and a kinematic hardening law are proposed for the inner surface. The adopted hardening law enables the plastic modulus to vary smoothly when the kinematic yield surface approaches the bounding surface and ensures at the same time the non-intersection of the two yield surfaces. Furthermore, the first loading, unloading, and reloading stages are treated differently by applying distinct hardening parameters. The main feature of the model is that its constitutive equations can be simply formulated based on the consistency condition for the inner yield surface based on the proposed kinematic hardening law; thereby, this model can be easily implemented in a finite element code using a classic stress integration scheme as for the modified Cam Clay model. The simulation results on the Boom Clay, natural stiff clay, have revealed the relevance of the model: a good agreement has been obtained between simulations and the experimental results from the tests with different stress paths under cyclic loading conditions. In particular, the model can satisfactorily describe the complex case of oedometric conditions where the deviator stress is positive upon loading (compression) but can become negative upon unloading (extension).  相似文献   

18.
孔亮  郑颖人  姚仰平 《岩土力学》2003,24(2):141-145
简要地介绍了次加载面理论的基本思想、假设及其物理解释。在广义塑性力学的框架内,引入次加载面的思想,把常规的椭圆-抛物线双屈服面模型,扩展为次加载面循环塑性模型,以反映循环荷载作用下土体的曼辛效应与棘轮效应。模型能考虑塑性应变增量对应力增量的相关性,既能反映土体的循环加载特性,又能反映正常固结土和超固结土的单调加载特性。  相似文献   

19.
20.
This paper presents a two-surface plasticity constitutive model for clays based on critical-state soil mechanics. The model reproduces the mechanical response of clays under multi-axial loading conditions and predicts both drained and undrained behavior at small and large strains. The constitutive model also captures both the strain-rate-dependent behavior of clays and the drop in strength towards a residual value at very large shear strains using novel approaches. The paper also describes a hierarchical process for the determination of the model parameters relying more on simple curve fitting of model equations to experimental data points corresponding to specific soil states instead of trial-and-error simulations of entire experiments. Model parameter values are determined for London Clay, San Francisco Bay Mud, Boston Blue Clay and Lower Cromer Till, and the performance of the model in simulating mechanical response of clays is demonstrated for a variety of initial states and loading conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号