首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   1篇
地质学   7篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2013年   1篇
  2008年   1篇
  2006年   1篇
  2001年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Antitaxial non‐deforming strain fringes from Lourdes, France, show complex quartz, calcite and chlorite fibre patterns that grew around pyrite in a slate during non‐coaxial progressive deformation. Development of these fringes was modelled using a computer program ‘Fringe Growth 2.0’ which can simulate incremental growth of crystal fibres around core‐objects of variable shape. It uses object‐centre paths as input, which are obtained from fibre patterns in thin section. The numerical experiments produced fibre patterns that show complex intergrowth of displacement‐controlled, face‐controlled and intermediate fibres similar to those in the natural examples. The direction of displacement‐controlled growth is only dependent on the relative movement between core‐object and fringe, so that core‐object rotation with respect to the fringe influences the fibre patterns and produces characteristic asymmetric fibre curvature. Object‐centre paths should be used for kinematic analysis of strain fringes instead of single fibres since these paths represent the fringe as a whole. The length along the path can be interpreted in terms of finite strain and path curvature in terms of rigid body rotation of fringes with respect to an external reference frame.  相似文献   
2.
Mechanical properties of granular materials can be significantly improved by the inclusion of small amounts of short synthetic fibres. This phenomenon has been experimentally studied before by many researchers who have found that the shear strength of a granular material can be significantly improved. This study presents a visualisation of the phenomenon using discrete element method (DEM) simulations of direct shear tests conducted on mixtures of an idealised granular material and randomly oriented fibres. Snapshots showing the deformation of the samples, the velocity vectors of the particles and the force chains produced inside the samples are presented at different stages of the tests. Changes in shear strength and porosity are also illustrated. It was found that the reinforcement produced depends mostly on the rigidity of the fibres.  相似文献   
3.
Moonmilk represents a conspicuous but controversially discussed precipitate of cave settings. Here, new electron backscatter diffraction microscopic and petrographic evidence on the origin of moonmilk calcite is presented. Calcite fibres in a moonmilk mat from the walls of an active cave (Tunnel‐Cave) in Devonian massive limestones in the northern part of the Rhenish Massif (Germany) show orientations of the crystallographic c‐axis independent of the morphological fibre orientation. This observation and the morphology of the fibres are in agreement with microbially induced, as opposed to abiogenic, calcite precipitation. Carbon‐isotope data are higher (1·9 to 3·3‰) than those commonly measured regionally in speleothem calcite (stalagmites, stalactites and flowstones), an observation attributed to kinetic effects. In combination, these findings add independent evidence to the complex interplay of inorganic and bio‐induced carbonate precipitation in cave environments.  相似文献   
4.
The presence of feathers in Ornithomimus is questioned on poor evidence and a failure to observe scientific process and procedure.  相似文献   
5.
A replicated field study using rainfall simulation and overland flow application was conducted in central Oahu, Hawaii, on a clay‐dominated Oxisol with a 9% slope. Three main treatment groups were examined: a bare treatment, a group of four rolled erosion control systems (RECSs) with open weave designs, and a group of five randomly oriented fibre RECSs. A total of 1122 measurements of runoff and erosion were made to examine treatment differences and to explore temporal patterns in runoff and sediment flux. All erosion control systems significantly delayed the time required to generate plot runoff under both simulated rainfall (35 mm h?1) and the more intense trickle flow application (114 mm h?1). Once runoff was generated during the rainfall application phase, the bare treatment runoff coefficients were significantly lower than those from the two groups of RECSs, as surface seal disruption by rilling is inferred to have enhanced infiltration in the bare treatments. During the more intense phase of overland flow application, the reverse pattern was observed. Interrill contributing‐area roughness was reduced on the bare treatment, facilitating increased runoff to well‐developed rill networks. Meanwhile, the form roughness associated with the RECSs delayed interrill flow to the poorly organized rills that formed under some of the RECSs. Regardless of runoff variations between treatments, sediment output was significantly lower from all surfaces covered by RECSs. The median cumulative sediment output from the bare surfaces was 6·9 kg, compared with 1·2 kg from the open‐weave RECSs and 0·2 kg from the random‐fibre RECSs. The random‐fibre systems were particularly effective under the more stressful overland flow application phase, with 63 times less sediment eroded than the bare treatments and 12 times less than that from the open‐weave systems. Architectural design differences between the two groups of RECSs are discussed in light of their relation to erosion process dynamics and shear stress partitioning. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
The potential use of fibres in a number of geotechnical engineering applications is gaining more interest in the geotechnical community. A select application consists of the improvement of soft grounds to mitigate their problematic shear strength characteristics. Extensive experimental work has been reported on the response/behaviour of fibre-reinforced clay (FRC) and was recently complemented by several strength prediction models. The effectiveness of these models has not been thoroughly evaluated yet. The objectives of this study are to (1) quantify the model uncertainty of a newly developed FRC model that is aimed exclusively at predicting the “undrained” shear strength of FRCs, (2) combine the model uncertainty with other conventional sources of uncertainty to assess the reliability levels that are inherent in the ultimate limit state design of spread footings that rest on a top FRC layer underlain by weaker natural soft clay, and (3) recommend factors of safety that would ensure a target reliability level for these footings. Results indicate that the traditional safety factor of 3 should be used with caution as it may not be sufficient to yield the desired level of reliability, particularly for smaller footings, lower applied stresses, larger scales of fluctuation, and larger target reliability indices.  相似文献   
7.
Soil improvement using fibres is widely used in soil stabilisation to prevent sand liquefaction. In order to study the undrained behaviour and liquefaction resistance of sand reinforced with polypropylene fibres, a series of triaxial compressive tests were conducted on unreinforced and reinforced Chlef sand with different contents of polypropylene fibres (0, 0.3, 0.5 and 0.8%). Samples were prepared at 30% and 80% relative densities representing loose and dense states respectively, and triaxial tests were performed at confining pressures of 50, 100 and 200 kPa. Tests results show that fibre inclusion has a significant effect on the shear strength and dilation of sandy soil. The increase in strength is function of fibre content, relative density and confining pressure. The maximum strength improvement for both loose and dense fibre-reinforced sand is more pronounced at higher confining pressure and at higher fibre content.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号