首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   34篇
  国内免费   99篇
测绘学   3篇
大气科学   1篇
地球物理   56篇
地质学   297篇
海洋学   35篇
天文学   4篇
综合类   2篇
自然地理   21篇
  2023年   1篇
  2022年   9篇
  2021年   5篇
  2020年   12篇
  2019年   23篇
  2018年   22篇
  2017年   12篇
  2016年   14篇
  2015年   10篇
  2014年   21篇
  2013年   32篇
  2012年   14篇
  2011年   25篇
  2010年   16篇
  2009年   31篇
  2008年   20篇
  2007年   21篇
  2006年   21篇
  2005年   19篇
  2004年   16篇
  2003年   14篇
  2002年   3篇
  2001年   9篇
  2000年   10篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1986年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有419条查询结果,搜索用时 31 毫秒
1.
A possible effective stress variable for wet granular materials is numerically investigated based on an adapted discrete element method (DEM) model for an ideal three‐phase system. The DEM simulations consider granular materials made of nearly monodisperse spherical particles, in the pendular regime with the pore fluid mixture consisting of distinct water menisci bridging particle pairs. The contact force‐related stress contribution to the total stresses is isolated and tested as the effective stress candidate for dense or loose systems. It is first recalled that this contact stress tensor is indeed an adequate effective stress that describes stress limit states of wet samples with the same Mohr‐Coulomb criterion associated with their dry counterparts. As for constitutive relationships, it is demonstrated that the contact stress tensor used in conjunction with dry constitutive relations does describe the strains of wet samples during an initial strain regime but not beyond. Outside this so‐called quasi‐static strain regime, whose extent is much greater for dense than loose materials, dramatic changes in the contact network prevent macroscale contact stress‐strain relationships to apply in the same manner to dry and unsaturated conditions. The presented numerical results also reveal unexpected constitutive bifurcations for the loose material, related to stick‐slip macrobehavior.  相似文献   
2.
This paper presents a second-order work analysis in application to geotechnical problems by using a novel effective multiscale approach. To abandon complicated equations involved in conventional phenomenological models, this multiscale approach employs a micromechanically-based formulation, in which only four parameters are involved. The multiscale approach makes it possible a coupling of the finite element method (FEM) and the micromechanically-based model. The FEM is used to solve the boundary value problem (BVP) while the micromechanically-based model is utilized at the Gauss point of the FEM. Then, the multiscale approach is used to simulate a three-dimensional triaxial test and a plain-strain footing. On the basis of the simulations, material instabilities are analyzed at both mesoscale and global scale. The second-order work criterion is then used to analyze the numerical results. It opens a road to interpret and understand the micromechanisms hiding behind the occurrence of failure in geotechnical issues.  相似文献   
3.
A coupled continuum‐discrete hydromechanical model was employed to analyse the liquefaction of a saturated loose deposit of cohesionless particles when subjected to a dynamic base excitation. The pore fluid flow was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid phase particles. A well established semi‐empirical relationship was utilized to quantify the fluid–particle interactions. The conducted simulations revealed a number of salient micro‐mechanical mechanisms and response patterns associated with the deposit liquefaction. Space and time variation of porosity was a major factor which affected the coupled response of the solid and fluid phases. Pore fluid flow was within Darcy's regime. The predicted response exhibited macroscopic patterns consistent with experimental results and case histories of the liquefaction of granular soil deposits. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
5.
Empirical criteria have been used successfully to design filters of most embankment large dam projects throughout the world. However, these empirical rules are only applicable to a particular range of soils tested in laboratory and do not take into account the variability of the base material and filter particle sizes. In addition, it is widely accepted that the safety of fill dams is mainly dependent on the reliability of their filter performance. The work herein presented consists in a new general method for assessing the probability of fulfilling any empirical filter design criteria accounting for base and filter heterogeneity by means of first‐order reliability methods (FORM), so that reliability indexes and probabilities of fulfilling any particular criteria are obtained. This method will allow engineers to estimate the safety of existing filters in terms of probability of fulfilling their design criteria and might also be used as a decision tool on sampling needs and material size tolerances during construction. In addition, sensitivity analysis makes possible to analyse how reliabilities are influenced by different sources of input data. Finally, in case of a portfolio risk assessment, this method will allow engineers to compare the safety of several existing dams in order to prioritize safety investments and it is expected to be a very useful tool to evaluate probabilities of failure due to internal erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
Túnyi  I.  Guba  P.  Roth  L. E.  Timko  M. 《Earth, Moon, and Planets》2003,93(1):65-74
Lightning discharge generated in the protoplanetary nebula is viewed as a temporally isolated surge in the flow of electrically charged particles, similar to that of terrestrial lightning. If the current is intense enough, a powerful circular impulse magnetic field is generated around the instantaneous virtual electric conductor. Such magnetic field is capable of magnetizing dust grains containing ferromagnetic components present in its vicinity to their saturation levels. As a result, dust grains attract one another, forming the aggregates. This magnetically driven attraction suggests an important process possibly operational at an early stage of the planetary accretion. Based on both a classical model for electric conductor, and the theory of Lienard–Wiechert electromagnetic potentials, our calculations show that the magnetic impulse due to a discharge channel of a few cm in diameter transferring a charge of about 104 electrons reaches as high as 10 T. At these magnetic fields, the ferromagnetic dust grains, and possibly the already-formed larger aggregates as well, are easily magnetized to the saturation levels, producing compact clusters exhibiting permanent magnetic moments.  相似文献   
7.
Biaxial test simulations using a packing of polygonal particles   总被引:1,自引:0,他引:1  
The mechanical response of cohesionless granular materials under monotonic loading is studied by performing molecular dynamic simulations. The diversity of shapes of soil grains is modelled by using randomly generated convex polygons as granular particles. Results of the biaxial test obtained for dense and loose media show that samples achieve the same void ratio at large strains independent of their initial density state. This limit state resembles the so‐called critical state of soil mechanics, except for some stress fluctuations, which remain for large deformations. These fluctuations are studied at the micro‐mechanical level, by following the evolution of the co‐ordination number, force chains and the fraction of the sliding contacts of the sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
8.
Experiments were carried out on granular flows generated by instantaneous release of gas-fluidised, bidisperse mixtures and propagating into a horizontal channel. The mixture consists of fine (< 100 μm) and coarse (> 100 μm) particles of same density, with corresponding grain size ratios of ∼ 2 to 9. Initial fluidisation of the mixture destroys the interparticle frictional contacts, and the flow behaviour then depends on the initial bed packing and on the timescale required to re-establish strong frictional contacts. At a fines mass fraction (α) below that of optimal packing (∼ 40%), the initial mixtures consist of a continuous network of coarse particles with fines in interstitial voids. Strong frictional contacts between the coarse particles are probably rapidly re-established and the flows steadily decelerate. Some internal friction reduction appears to occur as α and the grain size ratio increases, possibly due to particle rolling and the lower roughness of internal shear surfaces. Segregation only occurs at large grain size ratio due to dynamical sieving with fines concentrated at the flow base. In contrast, at α above that for optimal packing, the initial mixtures consist of coarse particles embedded in a matrix of fines. Flow velocities and run-outs are similar to that of the monodisperse fine end-member, thus showing that the coarse particles are transported passively within the matrix whatever their amount and grain size are. These flows propagate at constant height and velocity as inviscid fluid gravity currents, thus suggesting negligible interparticle friction. We have determined a Froude number of 2.61 ± 0.08 consistent with the dam-break model for fluid flows, and with no significant variation as a function of α, the grain size ratio, and the initial bed expansion. Very little segregation occurs, which suggests low intensity particle interactions during flow propagation and that active fluidisation is not taking place. Strong frictional contacts are only re-established in the final stages of emplacement and stop the flow motion. We infer that fines-rich (i.e. matrix-supported) pyroclastic flows propagate as inviscid fluid gravity currents for most of their emplacement, and this is consistent with some field data.  相似文献   
9.
The behavior of granular materials is known to depend on its loose or dense nature, which in turns depends both on density and confining pressure. Many models developed in the past require the use of different sets of constitutive parameters for the same material under different confining pressures. The purpose of this paper is to extend a basic generalized plasticity model for sands proposed by Pastor, Zienkiewicz and Chan by modifying the main ingredients of the model flow—rule, loading–unloading discriminating direction and plastic modulus—to include a dependency on the state parameter. The proposed model is tested against the available experimental data on three different sands, using for each of them a single set of material parameters, finding a reasonably good agreement between experiments and predictions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
10.
We investigate the elastic behavior of weakly cemented contact. We show that the radial distribution of stresses and the stiffnesses of a cemented contact are governed by the ratio a/RΛ, where R, a, and Λ are, respectively, the grain radius, the contact size, and the ratio of the elastic moduli of cement and grains. Moreover, we show that a cemented contact is always less stiff than a Hertzian contact having a similar size. Finally, we propose accurate approximate expressions of the contact stiffnesses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号