首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
地球物理   12篇
地质学   10篇
天文学   2篇
自然地理   7篇
  2020年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   2篇
  1995年   2篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
2.
3.
We present results from three geophysical campaigns using high‐resolution sub‐bottom profiling to image sediments deposited in Loch Ness, Scotland. Sonar profiles show distinct packages of sediment, providing insight into the loch's deglacial history. A recessional moraine complex in the north of the loch indicates initial punctuated retreat. Subsequent retreat was rapid before stabilisation at Foyers Rise formed a large stillstand moraine. Here, the calving margin produced significant volumes of laminated sediments in a proglacial fjord‐like environment. Subsequent to this, ice retreated rapidly to the southern end of the loch, where it again deposited a sequence of proglacial laminated sediments. Sediment sequences were then disturbed by the deposition of a thick gravel layer and a large turbidite deposit as a result of a jökulhlaup from the Spean/Roy ice‐dammed lake. These sediments are overlain by a Holocene sheet drape. Data indicate: (i) a former tributary of the Moray Firth Ice Stream migrated back into Loch Ness as a major outlet glacier with a calving margin in a fjord‐like setting; (ii) there was significant sediment supply to the terminus of this outlet glacier in Loch Ness; and (iii) that jökulhlaups are important for sediment supply into proglacial fjord/lake environments and may compose >20% of proglacial sedimentary sequences. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
Climbing dune‐scale cross‐statification is described from Late Ordovician paraglacial successions of the Murzuq Basin (SW Libya). This depositional facies is comprised of medium‐grained to coarse‐grained sandstones that typically involve 0·3 to 1 m high, 3 to 5 m in wavelength, asymmetrical laminations. Most often stoss‐depositional structures have been generated, with preservation of the topographies of formative bedforms. Climbing‐dune cross‐stratification related to the migration of lower‐flow regime dune trains is thus identified. Related architecture and facies sequences are described from two case studies: (i) erosion‐based sandstone sheets; and (ii) a deeply incised channel. The former characterized the distal outwash plain and the fluvial/subaqueous transition of related deltaic wedges, while the latter formed in an ice‐proximal segment of the outwash plain. In erosion‐based sand sheets, climbing‐dune cross‐stratification results from unconfined mouth‐bar deposition related to expanding, sediment‐laden flows entering a water body. Within incised channels, climbing‐dune cross‐stratification formed over eddy‐related side bars reflecting deposition under recirculating flow conditions generated at channel bends. Associated facies sequences record glacier outburst floods that occurred during early stages of deglaciation and were temporally and spatially linked with subglacial drainage events involving tunnel valleys. The primary control on the formation of climbing‐dune cross‐stratification is a combination between high‐magnitude flows and sediment supply limitations, which lead to the generation of sediment‐charged stream flows characterized by a significant, relatively coarse‐grained, sand‐sized suspension‐load concentration, with a virtual absence of very coarse to gravelly bedload. The high rate of coarse‐grained sand fallout in sediment‐laden flows following flow expansion throughout mouth bars or in eddy‐related side bars resulted in high rates of transfer of sands from suspension to the bed, net deposition on bedform stoss‐sides and generation of widespread climbing‐dune cross‐stratification. The later structure has no equivalent in the glacial record, either in the ancient or in the Quaternary literature, but analogues are recognized in some flood‐dominated depositional systems of foreland basins.  相似文献   
5.
Theoretical studies of glacial outburst floods (jökulhlaups) assume that: (i) intraglacial floodwater is transported efficiently in isolated conduits; (ii) intraglacial conduit enlargement operates proportionally to increasing discharge; (iii) floodwater exits glaciers through pre‐existing ice‐marginal outlets; and (iv) the morphology and positioning of outlets remains fixed during flooding. Direct field observations, together with historical jökulhlaup accounts, confirm that these theoretical assumptions are not always correct. This paper presents new evidence for spatial and temporal changes in intraglacial floodwater routing during jökulhlaups; secondly, it identifies and explains the mechanisms controlling the position and morphology of supraglacial jökulhlaup outlets; and finally, it presents a conceptual model of the controls on supraglacial outbursts. Field observations are presented from two Icelandic glaciers, Skeiðarárjökull and Sólheimajökull. Video footage and aerial photographs, taken before, during and after the Skeiðarárjökull jökulhlaup and immediately after the Sólheimajökull jökulhlaup, reveal changes in floodwater routing and the positioning and morphology of outlets. Field observations confirm that glaciers cannot transmit floodwater as efficiently as previously assumed. Rapid increases in jökulhlaup discharge generate basal hydraulic pressures in excess of ice overburden. Under these circumstances, floodwater can be forced through the surface of glaciers, leading to the development of a range of supraglacial outlets. The rate of increase in hydraulic pressure strongly influences the type of supraglacial outlet that can develop. Steady increases in basal hydraulic pressure can retro‐feed pre‐existing englacial drainage, whereas transient increases in pressure can generate hydraulic fracturing. The position and morphology of supraglacial outlets provide important controls on the spatial and temporal impact of flooding. The development of supraglacial jökulhlaup outlets provides a new mechanism for rapid englacial debris entrainment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
6.
7.
Widespread till and moraines record excursions of middle-Pleistocene ice that flowed up-slope into several watersheds of the Valley and Ridge Province along the West Branch of the Susquehanna River. A unique landform assemblage was created by ice-damming and jökulhlaups emanating from high gradient mountain watersheds. This combination of topography formed by multiple eastward-plunging anticlinal ridges, and the upvalley advance of glaciers resulted in an ideal geomorphic condition for the formation of temporary ice-dammed lakes. Extensive low gradient (1°–2° slope) gravel surfaces dominate the mountain front geomorphology in this region and defy simple explanation. The geomorphic circumstances that occurred in tributaries to the West Branch Susquehanna River during middle Pleistocene glaciation are extremely rare and may be unique in the world. Failure of ice dams released sediment-rich water from lakes, entraining cobbles and boulders, and depositing them in elongated debris fans extending up to 9 km downstream from their mountain-front breakout points. Poorly developed imbrication is rare, but occasionally present in matrix-supported sediments resembling debris flow deposits. Clast weathering and soils are consistent with a middle Pleistocene age for the most recent flows, circa the 880-ka paleomagnetic date for glacial lake sediments north of the region on the West Branch Susquehanna River. Post-glacial stream incision has focused along the margins of fan surfaces, resulting in topographic inversion, leaving bouldery jökulhlaup surfaces up to 15 m above Holocene channels. Because of their coarse nature and high water tables, jökulhlaup surfaces are generally forested in contrast to agricultural land use in the valleys and, thus, are readily apparent from orbital imagery.  相似文献   
8.
Philip M.   《Earth》2005,70(3-4):203-251
Proglacial fluvial sedimentary systems receive water from a variety of sources and have variable discharges with a range of magnitudes and frequencies. Little attention has been paid to how these various magnitude and frequency regimes interact to produce a distinctive sedimentary record in modern and ancient proglacial environments. This paper reviews the concept of magnitude and frequency in relation to proglacial fluvial systems from a geomorphic and sedimentary perspective rather than a hydrological or statistical perspective. The nature of the meltwater inputs can be characterised as low-magnitude–high-frequency, primarily controlled by ablation inputs from the source glacier, or high-magnitude–low-frequency, primarily controlled by ‘exceptional’ inputs. The most important high-magnitude–low-frequency inputs are catastrophic outburst floods, often referred to by the term kulhlaup (Icelandic for glacier-burst). Glacier surges are an additional form of cyclical variation impacting the proglacial environment, which briefly alter the volumes and patterns of meltwater input. The sedimentary consequences of low-magnitude–high-frequency discharges are related to frequent variations in stage, the greater directional variability that sediment will record, and the increased significance of channel confluence sedimentation. In contrast, the most significant characteristics of high-magnitude–low-frequency flooding include the presence of large flood bars and mid-channel ‘jökulhlaup’ bars, hyperconcentrated flows, large gravel dunes, and the formation of ice-block kettle hole structures and rip-up clasts. Glacier surges result in a redistribution of low-magnitude–high-frequency processes and products across the glacier margin, and small floods may occur at the surge termination. Criteria for distinguishing magnitude and frequency regimes in the proglacial environment are identified based on these major characteristics. Studies of Quaternary proglacial fluvial sediments are used to determine how the interaction of the various magnitude and frequency regimes might produce a distinctive sedimentary record. Consideration of sandur architecture and stratigraphy shows that the main controls on the sedimentary record of proglacial regions are the discharge magnitude and frequency regime, sediment supply, the pattern of glacier advance or retreat, and proglacial topography. A model of sandur development is suggested, which shows how discharge magnitude and frequency, in combination with sandur incision and aggradation (controlled by glacier advance and retreat) can control sandur stratigraphy.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号