首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3877篇
  免费   824篇
  国内免费   1842篇
测绘学   63篇
大气科学   521篇
地球物理   1556篇
地质学   3398篇
海洋学   548篇
天文学   15篇
综合类   201篇
自然地理   241篇
  2024年   12篇
  2023年   68篇
  2022年   117篇
  2021年   146篇
  2020年   205篇
  2019年   251篇
  2018年   229篇
  2017年   153篇
  2016年   231篇
  2015年   249篇
  2014年   274篇
  2013年   354篇
  2012年   311篇
  2011年   293篇
  2010年   299篇
  2009年   301篇
  2008年   268篇
  2007年   330篇
  2006年   337篇
  2005年   253篇
  2004年   238篇
  2003年   203篇
  2002年   152篇
  2001年   144篇
  2000年   145篇
  1999年   146篇
  1998年   108篇
  1997年   119篇
  1996年   127篇
  1995年   95篇
  1994年   87篇
  1993年   77篇
  1992年   52篇
  1991年   39篇
  1990年   35篇
  1989年   26篇
  1988年   19篇
  1987年   14篇
  1986年   9篇
  1985年   4篇
  1984年   11篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1954年   1篇
排序方式: 共有6543条查询结果,搜索用时 15 毫秒
1.
Difficulties are involved in discrete element method (DEM) modelling of the flexible boundary, that is, the membranes covering the soil sample, which can be commonly found in contemporary laboratory soil tests. In this paper, a novel method is proposed wherein the finite difference method (FDM) and DEM are coupled to simulate the rubber membrane and soil body, respectively. Numerical plane strain and triaxial tests, served by the flexible membrane, are implemented and analysed later. The effect of the membrane modulus on the measurement accuracy is considered, with analytical formulae derived to judge the significance of this effect. Based on an analysis of stress-strain responses and the grain rotation field, the mechanical performances produced by the flexible and rigid lateral boundaries are compared for the plane strain test. The results show that (1) the effect of the membrane on the test result becomes more significant at larger strain level because the membrane applies additional lateral confining pressure to the soil body; (2) the tested models reproduce typical stress and volumetric paths for specimens with shear bands; (3) for the plane strain test, the rigid lateral boundary derives a much higher peak strength and larger bulk dilatation, but a similar residual strength, compared with the flexible boundary. The latter produces a more uniform (or ‘diffuse') rotation field and more mobilised local kinematics than does the former. All simulations show that the proposed FDM-DEM coupling method is able to simulate laboratory tests with a flexible boundary membrane.  相似文献   
2.
ABSTRACT

High performance computing is required for fast geoprocessing of geospatial big data. Using spatial domains to represent computational intensity (CIT) and domain decomposition for parallelism are prominent strategies when designing parallel geoprocessing applications. Traditional domain decomposition is limited in evaluating the computational intensity, which often results in load imbalance and poor parallel performance. From the data science perspective, machine learning from Artificial Intelligence (AI) shows promise for better CIT evaluation. This paper proposes a machine learning approach for predicting computational intensity, followed by an optimized domain decomposition, which divides the spatial domain into balanced subdivisions based on the predicted CIT to achieve better parallel performance. The approach provides a reference framework on how various machine learning methods including feature selection and model training can be used in predicting computational intensity and optimizing parallel geoprocessing against different cases. Some comparative experiments between the approach and traditional methods were performed using the two cases, DEM generation from point clouds and spatial intersection on vector data. The results not only demonstrate the advantage of the approach, but also provide hints on how traditional GIS computation can be improved by the AI machine learning.  相似文献   
3.
A formula for the thickness of a shear band formed in saturated soils under a simple shear or a combined stress state has been proposed. It is shown that the shear band thickness is dependent on the pore pressure properties of the material and the dilatancy rate, but is independent of the details of the combined stress state. This is in accordance with some separate experimental observations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy–Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
5.
A closed‐form deflection response of a beam rest is presented in this paper using the integral transform method. The theory of linear partial differential equations is used to represent the deflection of beam subjected to a moving harmonic line load in integration form. The solution is finally carried out using the inverse Fourier transform. To evaluate the integration analytically, poles of the integrand are identified with the help of algebraic equation theory. Residue theorem is then utilized to represent the integration as a contour integral in the complex plane. Closed‐form deflections and numerical results are provided for different combinations of load frequency and velocity. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
6.
Experimental results are presented from the extensive program of drained plane strain compression tests on sand carried out in Grenoble over the last two decades. Systematic analysis of photographs of the deforming specimen allowed for measuring deformations and determining strain fields throughout the test, that is: prior to, at, and after the onset of strain localization. The principles, details and accuracy of the procedure are described, as well as its suitability to properly depict the patterns of deformation. Findings concerning the occurrence and progression of strain localization are discussed. The issues of shear band orientation and thickness are addressed, as well as temporary and persistent complex localization patterns, and the volumetric behaviour inside a band after its formation. The influence of such variables as initial state of the sand (effective stress and relative density), specimen size and slenderness, as well as grain size, is discussed. Copyright © 2004 John Wiley & Sons, Ltd  相似文献   
7.
1 HYDROLOGIC FEATURES Lingdingyang Estuary, located at the middle south of Guangdong Province, is a bell-shaped estuary with a north-south direction. Its area is about 2100km2. The north of Qi′ao Island and Inner-Lingding Island, and the south of Humen are grouped as Neilingdingyang Estuary, having an area of 1041km2. Affected by topography, runoff and tide, its dynamic condition is very complicated. Different water areas have different hydrologic features. The topography under …  相似文献   
8.
IntroductionThe area of eastern Liaoning is an importantmetal and nonmetal metallogenetic district in China,and the Liaohe group is one of the most importantstrata that hosts Pb, Zn, Au, B and Mg etcstratabound deposits. Up to now many geo1ogistssuch as Z…  相似文献   
9.
10.
In this paper the second order characteristic (discontinuous bifurcation) condition is derived for the granular flow (fully plastic) equations. This second order bifurcation equation is shown to be formally identical to the first order localization requirement during steady elastoplastic deformation provided the elastic compliance tensor is substituted for the product of the plastic multiplier with the flow Hessian. For isotropic yield and flow functions the invariant form of the characteristic condition is given in detail, as well as an alternative expression in adapted co‐ordinates. The characteristic condition can be regarded as defining a hardening function which is maximized to identify the critical angles. When the method is applied to 3D Coulomb flow, Mohr's 3D fracture plane conditions are obtained uniquely. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号