首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  国内免费   3篇
地球物理   4篇
地质学   25篇
海洋学   4篇
自然地理   5篇
  2017年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1978年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
A critical evaluation of literature values for the solubility products, K sp NBS = [Fe2+][HS] Fe2+ HS (H NBS + )–1, of various iron sulphide phases results in consensus values for the pKs of 2.95 ± 0.1 for amorphous ferrous sulphide, 3.6 ± 0.2 for mackinawite, 4.4 ± 0.1 for greigite, 5.1 ± 0.1 for pyrrhotite, 5.25 ± 0.2 for troilite and 16.4 ± 1.2 for pyrite.Where the analogous ion activity products have been measured in anoxic freshwaters in which there is evidence for the presence of solid phase FeS, the values lie within the range of 2.6–3.22, indicating that amorphous iron sulphide is the controlling phase. The single value for a groundwater of 2.65 (2.98 considering carbonate complexation) agrees. In seawater four values range between 3.85 to 4.2, indicating that mackinawite or greigite may be the controlling phase. The single low value of 2.94 is in a situation where particularly high fluxes of Fe (II) and S (–II) may result in the preferential precipitation of amorphous iron sulphide. Formation of framboidal pyrite in these sulphidic environments may occur in micro-niches and does not appear to influence bulk concentrations. Calculations show that the formation of Fe2S2 species probably accounts for very little of the iron or sulphide in most natural waters. Previously reported stability constants for the formation of Fe (HS)2 and (Fe (HS)3) are shown to be suspect, and these species are also thought to be negligible in natural waters. In completely anoxic pore waters polysulphides also have a negligible effect on speciation, but in tidal sediments they may reach appreciable concentrations and lead to the direct formation of pyrite. Concentrations of iron and sulphide in pore waters can be controlled by the more soluble iron sulphide phase. The change in the IAP with depth within the sediment may reflect ageing of the solid phase or a greater flux of Fe (II) and S (–II) nearer the sediment surface. This possible kinetic influence on the value of IAPs has implications for their use in geochemical studies involving phase formation.  相似文献   
2.
Mike Solomon   《Ore Geology Reviews》2008,33(3-4):352-360
Current models of massive sulphide ore genesis in the Bathurst mining camp, New Brunswick, involve settling of sulphide particles from a stagnating, low-salinity hydrothermal plume spreading laterally in an anoxic ocean layer with minimal sulphate content. There is fragmentary evidence of ocean anoxia in the form of local fine lamination in the shales that host some of the deposits but the total organic carbon, S, Fe, U/Th, Ni/Co, V/Ni and V/Cr relationships indicate deposition under oxic or dysoxic conditions. Vanadium and Mn values range from oxic to anoxic and sulphate-reducing to non-sulphate reducing but Mn may be anomalously low due to derivation by erosion of acidic volcanic rocks. The somewhat equivocal physical and chemical data, combined with the likely disturbing effects of penecontemporaneous volcanism, considerably weaken the case for an anoxic bottom layer in a static ocean. The presence of barite with ambient seawater 34S values in Brunswick no. 12 ore, and the abundance of sulphate in modern euxinic basin waters, make a sulphate-free layer unlikely, even if anoxic. Sulphate-bearing, low-salinity fluids mixing with seawater would lead to growth of barite-bearing chimneys and baritic rubble mounds, which are not observed. A model involving brine-pool deposition better explains the major features of the Bathurst ores.  相似文献   
3.
Platinum-group element (PGE) mineralisation within the Platreef at Overysel is controlled by the presence of base metal sulphides (BMS). The floor rocks at Overysel are Archean basement gneisses, and unlike other localities along the strike of the Platreef where the floor is comprised of Transvaal Supergroup sediments, the intimate PGE–BMS relationship holds strong into the footwall rocks. Decoupling of PGE from BMS is rare and the BMS and platinum-group mineral assemblages in the Platreef and the footwall are almost identical. There is minimal overprinting by hydrothermal fluids; therefore, the mineralisation style present at Overysel may represent the most ‘primary’ style of Platreef mineralisation preserved anywhere along the strike. Chondrite-normalised PGE profiles reveal a progressive fractionation of the PGE with depth into the footwall, with Ir, Ru and Rh dramatically depleted with depth compared to Pt, Pd and Au. This feature is not observed at Sandsloot and Zwartfontein, to the south of Overysel, where the footwall rocks are carbonates. There is evidence from rare earth element abundances and the amount of interstitial quartz towards the base of the Platreef pyroxenites that contamination by a felsic melt derived from partial melting of the gneissic footwall has taken place. Textural evidence in the gneisses suggests that a sulphide liquid percolated down into the footwall through a permeable, inter-granular network that was produced by partial melting around grain boundaries in the gneisses that was induced by the intrusion of the Platreef magma. PGE were originally concentrated within a sulphide liquid in the Platreef magma, and the crystallisation of monosulphide solid solution from the sulphide liquid removed the majority of the IPGE and Rh from it whilst still within the mafic Platreef. Transport of PGE into the gneisses, via downward migration of the residual sulphide liquid, fractionated out the remaining IPGE and Rh in the upper parts of the gneisses leaving a ‘slick’ of disseminated sulphides in the gneiss, with the residual liquid becoming progressively more depleted in these elements relative to Pt, Pd and Au. Highly sulphide-rich zones with massive sulphides formed where ponding of the sulphide liquid occurred due to permeability contrasts in the footwall. This study highlights the fact that there is a fundamental floor rock control on the mechanism of distribution of PGE from the Platreef into the footwall rocks. Where the floor rocks are sediments, fluid activity related to metamorphism, assimilation and later serpentinisation has decoupled PGE from BMS in places, and transport of PGE into the footwall is via hydrothermal fluids. In contrast, where the floor is comprised of anhydrous gneiss, such as at Overysel, there is limited fluid activity and PGE behaviour is controlled by the behaviour of sulphide liquids, producing an intimate PGE–BMS association. Xenoliths and irregular bands of chromitite within the Platreef are described in detail for the first time. These are rich in the IPGE and Rh, and evidence from laurite inclusions indicates they must have crystallised from a PGE-saturated magma. The disturbed and xenolithic nature of the chromitites would suggest they are rip-up clasts, either disturbed by later pulses of Platreef magma in a multi-phase emplacement or transported into the Platreef from a pre-existing source in a deeper staging chamber or conduit.  相似文献   
4.
5.
In order to establish the magnetic carriers and assess the reliability of previous paleomagnetic results obtained for Eocene marine marls from the south Pyrenean basin, we carried out a combined paleo- and rock-magnetic study of the Pamplona-Arguis Formation, which crops out in the western sector of the southern Pyrenees (N Spain). The unblocking temperatures suggest that the characteristic remanent magnetization (ChRM) is carried by magnetite and iron sulphides. The ChRM has both normal and reversed polarities regardless of whether it resides in magnetite or iron sulphides, and represents a primary Eocene magnetization acquired before folding. Rock magnetic results confirm the presence of magnetite and smaller amounts of magnetic iron sulphides, most likely pyrrhotite, in all the studied samples. Framboidal pyrite is ubiquitous in the marls and suggests that iron sulphides formed during early diagenesis under sulphate-reducing conditions. ChRM directions carried by magnetic iron sulphides are consistent with those recorded by magnetite. These observations suggest that magnetic iron sulphides carry a chemical remanent magnetization that coexists with a remanence residing in detrital magnetite. We suggest that the south Pyrenean Eocene marls are suitable for magnetostratigraphic and tectonic purposes but not for studies of polarity transitions, secular variations and geomagnetic excursions, because it is difficult to test for short time differences in remanence lock-in time for the two minerals. The presence of iron sulphide minerals contributing to the primary magnetization in Eocene marine marls reinforces the idea that these minerals can persist over long periods of time in the geological record.  相似文献   
6.
Some results of induced polarisation surveys carried out for the exploration of sulphide mineralisation in parts of Rajasthan and Gujarat, employing both frequency-domain and time-domain techniques, are presented. A few typical examples of I.P. results along with borehole sections and results of conventional geophysical surveys have been incorporated. Frequency-domain and time-domain I.P. data have been compared for selected areas.Borehole data pertaining to several areas investigated have corroborated the I.P. results fairly well.  相似文献   
7.
8.
《International Geology Review》2012,54(14):1635-1648
The Koushk zinc–lead deposit in the central part of the Zarigan–Chahmir basin, central Iran, is the largest of several sedimentary–exhalative (SEDEX) deposits in this basin, including the Chahmir, Zarigan, and Darreh-Dehu deposits. The host-rock sequence consists of carbonaceous, fine-grained black siltstone with interlayered rhyolitic tuffs. It corresponds to the upper part of the Lower Cambrian volcano-sedimentary sequence that was deposited on the Posht-e-Badam Block due to back-arc rifting of the continental margin of the Central Iranian Microcontinent. This block includes the late Neoproterozoic metamorphic basement of the Iran plate, overlain by rocks dating from the Early Cambrian to the Mesozoic. Based on ore body structure, mineralogy, and ore fabric, we recognize four different ore facies in the Koushk deposit: (1) a stockwork/feeder zone, consisting of a discordant mineralization of sulphides forming a stockwork of sulphide-bearing dolomite (quartz) veins cutting the footwall sedimentary rocks; (2) a massive ore/vent complex, consisting of massive replacement pyrite, galena, and sphalerite with minor arsenopyrite and chalcopyrite; (3) bedded ore, with laminated to disseminated pyrite, sphalerite, and galena; and (4) a distal facies, with minor disseminated and laminated pyrite, banded cherts, and disseminated barite. Carbonatization and sericitization are the main wall-rock alterations; alteration intensity increases towards the feeder zone. The δ34S composition of pyrite, sphalerite, and galena ranges from?+6.5 to?+36.7‰. The highest δ34S values correspond to bedded ore (+23.8 to?+36.7‰) and the lowest to massive ore (+6.5 to?+?17.8‰). The overall range of δ34S is remarkably higher than typical magmatic values, suggesting that sulphides formed from the reduction of seawater sulphate by bacteriogenic sulphate reduction in a closed or semi-closed system in the bedded ore, whereas thermochemical sulphate reduction likely played an important role in the feeder zone. Sulphur isotopes, along with sedimentological, textural, mineralogical, and geochemical evidences, suggest that this deposit should be classified as a vent-proximal SEDEX ore deposit.  相似文献   
9.
Eight Zn–Pb–Cu massive sulphide deposits that appear to have formed on the sea floor (seven in Spain, one in Tasmania) are believed to have been precipitated in brine pools, based on the salinities and temperatures of fluid inclusions in underlying stockworks. Comparing the geological features of these deposits with those of the Zn–Pb–Cu massive sulphide ores of the Hokuroku Basin, Japan, which have formed as mounds from buoyant fluids of low salinity, shows that brine pool deposits have: (1) potentially very large size and tonnage, and high aspect ratio, (2) higher Zn/Cu and Fe/Cu values, (3) no evidence of chimneys, (4) relatively abundant framboidal pyrite and primary mineral banding, (5) reduced mineral assemblages (pyrite-arsenopyrite/pyrrhotite), and minor or rare barite in the massive sulphide, (6) associated stratiform and/or vein carbonates, (7) relatively unimportant zone refining, (8) lack of vertical variation in sphalerite and sulphur isotopic compositions, and (9) evidence of local bacterial sulphate reduction. Application of these criteria to the Rosebery deposit in Tasmania, for which there are no fluid inclusion data, leads to the conclusion that the southern section was deposited as separate lenses in a brine-filled basin or basins. Other potential candidates include Brunswick no. 12 and Heath Steele (Canada), Woodlawn and Captains Flat (New South Wales), Hercules and Que River (Tasmania), and Tharsis and the orebodies at Aljustrel (Spain and Portugal). Recently published fluid inclusion data for Gacun (China) and Mount Chalmers (Queensland) suggest that not all ores deposited from highly saline fluids have reduced mineral assemblages.  相似文献   
10.
Abstract Standard petrographic, microthermometric and Raman spectroscopic analyses of fluid inclusions from the metamorphosed massive sulphide deposits at Ducktown, Tennessee, indicate that fluids with a wide range of compositions in the C–O–H–N–S–salt system were involved in the syn- to post-metamorphic history of these deposits. Primary fluid inclusions from peak metamorphic clinopyroxene contain low-salinity, H2O–CH4 fluids and calcite, quartz and pyrrhotite daughter crystals. Many of these inclusions exhibit morphologies resembling those produced in laboratory experiments in which confining pressures significantly exceed the internal pressures of the inclusions. Secondary inclusions in metamorphic quartz from veins, pods, and host matrix record a complex uplift history involving a variety of fluids in the C–O–H–N–salt system. Early fluids were generated by local devolatilization reactions while later fluids were derived externally. Isochores calculated for secondary inclusions in addition to the chronology of trapping and morphological features of primary and secondary fluid inclusions suggest an uplift path which was concave toward the temperature axis over the P–T range 6–3 kbar and 550–225° C. Immiscible H2O–CH4–N2–NaCl fluids were trapped under lithostatic to hydrostatic pressure conditions at 3–0.5 kbar and 215 ± 20° C. Entrapment occurred during Alleghanian thrusting, and the fluids may have been derived by tectonically driven expulsion of pore fluids and thermal maturation of organic material in lower-plate sedimentary rocks which are thought to underlie the deposits. Episodic fracturing and concomitant pressure decreases in upper-plate rocks, which host the ore bodies, would have allowed these fluids to move upward and become immiscible. Post-Alleghanian uplift appears to have been temperature-convex. Uplift rates of 0.10–0.05 mm year?1 from middle Ordovician to middle Silurian – late Devonian, and 0.07–0.12 mm year?1 from middle Silurian – late Devonian to late Permian are suggested by our uplift path and available geochronological data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号