首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Chahmir zinc–lead deposit (1.5 Mt @ 6 % Zn + 2 % Pb) in Central Iran is one among several sedimentary-exhalative Zn–Pb deposits in the Early Cambrian Zarigan–Chahmir basin (e.g., Koushk, Darreh-Dehu, and Zarigan). The deposit is hosted by carbonaceous, fine-grained black siltstones, and shales interlayered with volcaniclastic sandstone beds. It corresponds to the upper part of the Early Cambrian volcano-sedimentary sequence (ECVSS), which was deposited on the Posht-e-Badam Block during back-arc rifting of the continental margin of Central Iran. Based on crosscutting relationships, mineralogy, and texture of sulfide mineralization, four different facies can be distinguished: stockwork (feeder zone), massive ore, bedded ore, and distal facies (exhalites with barite). Silicification, carbonatization, sericitization, and chloritization are the main wall-rock alteration styles; alteration intensity increases toward the proximal feeder zone. Fluid inclusion microthermometry was carried out on quartz associated with sulfides of the massive ore. Homogenization temperatures are in the range of 170–226 °C, and salinity is around 9 wt% NaCl eq. The size distribution of pyrite framboids of the bedded ore facies suggests anoxic to locally suboxic event for the host basin. δ34S(V-CDT) values of pyrite, sphalerite, and galena range from +10.9 to +29.8?‰. The highest δ34S values correspond to the bedded ore (+28.6 to +29.8?‰), and the lowest to the massive ore (+10.9 to +14.7?‰) and the feeder zone (+11.3 and +12.1?‰). The overall range of δ34S is consistent with a sedimentary environment where sulfide sulfur was derived from two sources. One of them was corresponding to early ore-stage sulfides in bedded ore and distal facies, consistent with bacterial reduction from coeval seawater sulfate in a closed or semiclosed basin. However, the δ34S values of late ore-stage sulfides, observed mainly in massive ore, interpreted as a hydrothermal sulfur component, leached from the lower part of the ECVSS. Sulfur isotopes, along with the sedimentological, textural, mineralogical, fluid inclusion, and geochemical characteristics of the Chahmir deposit are in agreement with a vent-proximal (Selwyn type) SEDEX ore deposit model.  相似文献   

2.
34S/32S ratios have been measured in a suite of samples from the stratabound, volcanogenic massive sulphide deposit at Woodlawn, N.S.W. 34S values for the sulphides vary as follows: in the ore horizon, pyrite +6.7 to +9.2%. (mean +8.1‰), sphalerite +5.2 to +8.6‰. (mean +6.9‰), chalcopyrite +6.4 to +7.0‰ (mean +6.7‰) and galena +2.8 to +5.5‰ (mean +4.4‰); in the vein mineralization, the host volcanics—pyrite +8.7 to +11.4%. (mean +9.8‰), sphalerite +7.8 to + 10.3‰ (mean +9.2‰), chalcopyrite; +8.8 to +10.1‰ (mean +9.2‰) and galena +6.9 to +7.2‰ (mean +7.1‰). Barite from the upper ore horizon levels has an isotopic composition of +30.0‰, consistent with its having originated from Silurian ocean sulphate. The general order of 34S enrichment in the sulphides is pyrite > chalcopyrite sphalerite > galena. Isotopic fractionations in the systems galena/sphalerite/pyrite and chalcopyrite/pyrite indicate an equilibration temperature of 275–300°C. This temperature is considered to represent that of sulphide deposition.  相似文献   

3.
锡铁山矿床两类喷流沉积成因的铅锌矿体研究   总被引:9,自引:0,他引:9  
锡铁山大型铅锌矿床发育有非层状和层状两种类型的铅锌矿体,通过对两类矿体产出地质条件与地球化学特征的研究,发现非层状矿体分布于代表喷口系统的网脉状蚀变带的上方附近,其中发育有大量的热水爆破角砾岩,而层状矿体分布于远离喷口的外侧,属于远端沉积的产物。两者具有相同的矿物组合和成矿元素组合,自非层状矿体→层状矿体,矿石品位下降,Zn/Pb比值增高,黄铁矿相对含量增加。揭示出非层状矿体不是层状矿体后期改造的产物,而是形成于喷流作用阶段。考虑到锡铁山矿床中规模巨大的喷口系统以及厚层状的喷流成因大理岩,推断锡铁山矿床及周边地区还有巨大的找矿潜力,找矿重点是层状铅锌矿床(体)。  相似文献   

4.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

5.
The sulphur isotope composition of 233 sulphides and 40 sulphates has been investigated and evaluated in combination with 29 earlier published data. The total variation of δ34S values for the sulphides and the sulphates ranges from ?40 up to ?1 ‰ and from +7 up to +20 ‰, respectively. For the mineral species the variations are (with number of samples in brackets): galena (96) ?32 up to ?2 ‰, sphalerite (141) ?30 up to ?4 ‰, marcasite (16) ?27 up to ?1 ‰, pyrite (10) ?26 up to ?13 ‰, molybedenite (3) ?40 up to ?29 ‰, anhydrite and gypsum (8) +15 up to +20 ‰, coelestine (1) +19 ‰, and barite (33) +7 up to +18 ‰. The frequency distribution of the δ34S values corresponds with the complexity of the ore forming processes which resulted in six strata-bound ore mineralizations. The sulphate values clearly show that the sulphate sulphur originates from sea water sulphate. The sulphides are formed by bacteriogeneric processes from seawater sulphate, and their sulphur isotope composition depends on the lithofacies of the sediments as well as on the following diagenetic processes.  相似文献   

6.
The Sargaz Cu–Zn massive sulfide deposit is situated in the southeastern part of Kerman Province, in the southern Sanandaj–Sirjan Zone of Iran. The stratigraphic footwall of the Sargaz deposit is Upper Triassic to Lower Jurassic (?) pillowed basalt, whereas the stratigraphic hanging wall is andesite. Mafic volcanic rocks are overlain by andesitic volcaniclastics and volcanic breccias and locally by heterogeneous debris flows. Rhyodacitic flows and volcaniclastics overlie the sequence of basaltic and andesitic rocks. Based on the bimodal nature of volcanism, the regional geologic setting and petrochemistry of the volcanic rocks, we suggest massive sulfide mineralization in the Sargaz formed in a nascent ensialic back-arc basin. The current reserves (after ancient mining) of the Sargaz deposit are 3 Mt at 1.34% Cu, 0.38% Zn, 0.08%Pb, 0.24 g/t Au, and 7 g/t Ag. The structurally dismembered massive sulfide lens is zoned from a pyrite-rich base, to a pyrite?±?chalcopyrite-rich central part, and a sphalerite–chalcopyrite-rich upper part, with a sphalerite-rich zone lateral to the upper part. The main sulfide mineral is pyrite, with lesser chalcopyrite and sphalerite. The feeder zone, comprised of a vein stockwork consists of quartz–sulfide–sericite pesudobreccia and, in the deepest part, chlorite–quartz–pyrite pesudobreccia. Footwall hydrothermal alteration extends at least 70–80 m below the massive sulfide lens and more than a hundred meters along strike from the massive sulfide lens. Jasper and Fe–Mn bearing chert horizons lateral to the sulfide deposit represent low-temperature hydrothermal precipitates of the evolving hydrothermal system. Based on mineral textures and paragenetic relationships, the growth history of the Sargaz deposit is complex and includes: (1) early precipitation of sulfides (protore) on the seafloor as precipitation of fine-grained anhedral pyrite, sphalerite, quartz, and barite; (2) anhydrite precipitation in open spaces and mineral interstices within the sulfide mound followed by its subsequent dissolution, formation of breccia textures, and mound clasts and precipitation of coarse-grained pyrite, sphalerite, tetrahedrite–tennantite, galena and barite; (3) replacement of pre-existing sulfides by chalcopyrite precipitated at higher temperatures (zone refining); (4) continued “refining” led to the dissolution of stage 3 chalcopyrite and formation of a base-metal-depleted pyrite body in the lowermost part of the massive sulfide lens; (5) carbonate veins were emplaced into the sulfide lens, replacing stage 2 barite. The δ34S composition of the sulfides ranges from +2.8‰ to +8.5‰ (average, +5.6‰) with a general increase of δ34S ratios with depth within the massive sulfide lens and underlying stockwork zone. The heavier values indicate that some of the sulfur was derived from seawater sulfate that was ultimately thermochemically reduced in deep hydrothermal reaction zones.  相似文献   

7.
The southwestern Sabzevar basin is the north of Central Iranian Microcontinent hosts abundant mineral deposits, including exhalative Mn mineralization and Cu-Zn volcanogenic massive sulfide (VMS) deposits. Amongst them, the Nudeh Besshi-type Cu–Zn volcanogenic massive sulfide (VMS) deposit is hosted within the lower part of a Late Cretaceous volcano-sedimentary sequence composed of alkali olivine basalt flows and tuffaceous silty sandstone. Based on investigations into the ore geometry, mineralogy, and texture, we recognized three different ore facies: (1) a stockwork of sulfide-bearing quartz veins cutting across the footwall volcano-sedimentary rocks and representing the stringer zone; (2) a massive ore type, displaying replacement texture with pyrite, chalcopyrite, sphalerite, friedrichite, and minor magnetite; and (3) a bedded ore type, with laminated to disseminated pyrite and chalcopyrite. EPMA studies indicate a distinctive minor element distribution between the different ore types of the Nudeh deposit. The Fe content in the sphalerite ranges from 0.65–1.80?wt.%, indicating the Fe-poor nature of the sphalerite. However, the Cd content in sphalerite ranged between 0.164–0.278?wt.%. According to the mineral compositions, Zn, Se, and Ag are found in bornite as minor elements. In the bedded ore facies, the pyrite contains higher levels of Se (up to 0.35?wt.%). The Zn content in the friedrichite in all of the ore samples is low. The Co/Ni ratios in pyrite from the Nudeh ore are lower than those of most magmatic deposits, but are similar to those from volcanogenic deposits, and hence support the proposed hydrothermal origin of the deposit. Two generations of quartz, Q1 and Q2 in the stockwork veins, contain primary fluid inclusions and these contain two phases (liquid and vapor). The lack of vapor-rich inclusions or variable liquid/vapor ratios indicate that the fluids did not boil at the site of trapping. Salinity for both Q1 and Q2 fluid inclusions ranges between 2.2–6.8?wt.% eq. NaCl. Homogenization temperatures for inclusions in the Q1 and Q2 veins average at about 296?°C and are similar to the temperatures of hydrothermal fluids discharged through vents in many modern seafloor VMS deposit. The Nudeh Besshi-type VMS deposit appears to have formed on the seafloor and based on the salinity and temperature constraints from the underlying stockwork, a buoyancy plume model is proposed as a mechanism for precipitation.  相似文献   

8.
The Jinding Zn–Pb deposit located in the Mesozoic-Cenozoic Lanping Basin of southwest China has ore reserves of ∼ 220 Mt with an average grade of 6.1% Zn and 1.3% Pb. The mineralization is hosted by sandstone in the Early Cretaceous Jingxing Formation and limestone breccia in the Paleocene Yunlong Formation. Mineralization in both types of host rocks is characterized by a paragenetic sequence beginning with marcasite–sphalerite (Stage 1) followed by pyrite–marcasite–sphalerite–galena (Stage 2), and then galena–sphalerite–pyrite–sulfate–carbonate (Stage 3). Pyrite from these stages have different δ33S compositions with pyrite from Stage 1 averaging − 9.6‰, Stage 2 averaging − 8.9‰, and Stage 3 averaging + 0.3‰. Sphalerite hosted by the sandstone has similar δ66Zn values ranging from 0.10 to 0.30‰ in all stages of the mineralization, but sphalerite samples from the limestone breccia-hosted ore show variable δ66Zn values between − 0.03 and 0.20‰. Our data on sphalerite precipitated during the earlier stages of mineralization has a constant δ66Zn value and cogenetic pyrite displays a very light sulfur isotope signature, which we believe to reflect a sulfur source that formed during bacterial sulfate reduction (BSR). The Stage 3 sphalerite and pyrite precipitated from a late influx of metal-rich basinal brine, which had a relatively constant variable δ66Zn isotopic composition due to open system isotope fractionation, and a near zero δ33S composition due to the influence of abiotic thermochemical sulfate reduction from observed sulfates in the host rock.  相似文献   

9.
The sequence of orebody formation at the Talgan massive sulfide deposit; morphology of sulfide orebodies; mineralogy, texture, and structure of ore; chemical composition of minerals; and fluid inclusions and relationships between stable isotopes (S, C, O) in sulfides from ores and carbonate rocks are discussed. The deposit is localized in the Uzel’ga ore field of the northern Magnitogorsk Megazone. The sulfide ore is hosted in the upper felsic sequence of the Middle Devonian Karamalytash Formation, composed of basalt, basaltic andesite, and rhyodacite. Orebodies are irregular lenses lying conformably with host rocks. Pyrite, chalcopyrite, sphalerite, and fahlore are the major ore minerals; galena, bornite, and hematite are of subordinate abundance. Sulfide mineralization bears attributes of deposition under subseafloor conditions. The carbonate and rhyolite interlayers at the roofs of orebodies and the supraore limestone sequence served as screens. Zoning typical of massive sulfide deposits was not established. The study of fluid inclusions has shown that the temperature of the hydrothermal solution varied from 375 to 110°C. δ34S‰ ranges from ?2.4 to +3.2‰ in pyrite, from ?1.2 to +2.8‰ in chalcopyrite, and from ?3.5 to +3.0‰ in sphalerite (CDT). These parameters correspond to an isotopic composition of magmatic sulfur without a notable percentage of sulfate sulfur. δ13C and δ18O of carbonates vary from ?18.1 to +5.9‰ (PDB) and from +13.7 to +27.8‰ (SMOW), respectively. The carbon and oxygen isotopic compositions of carbonates from ores and host rocks markedly deviate from the field of marine carbonates; a deep source of carbon is suggested. The results obtained show that the main mass of polysulfide ore at the Talgan deposit was formed beneath the floor of a paleoocean. The ore-forming system was short-lived and its functioning did not give rise to the formation of zonal orebodies. Magmatic fluid played the leading role in mineral formation.  相似文献   

10.
Mineral assemblages and chemical compositions of ore minerals from the Boroo gold deposit in the North Khentei gold belt of Mongolia were studied to characterize the gold mineralization, and to clarify crystallization processes of the ore minerals. The gold deposit consists of low‐grade disseminated and stockwork ores in granite, metasedimentary rocks and diorite dikes. Moderate to high‐grade auriferous quartz vein ores are present in the above lithological units. The ore grades of the former range from about 1 to 3 g/t, and those of the latter from 5 to 10 g/t, or more than 10 g/t Au. The main sulfide minerals in the ores are pyrite and arsenopyrite, both of which are divisible into two different stages (pyrite‐I and pyrite‐II; arsenopyrite‐I and arsenopyrite‐II). Sphalerite, galena, chalcopyrite, and tetrahedrite are minor associated minerals, with trace amounts of bournonite, boulangerite, geerite, alloclasite, native gold, and electrum. The ore minerals in the both types of ores are variable in distribution, abundance and grain size. Four modes of gold occurrence are recognized: (i) “invisible” gold in pyrite and arsenopyrite in the disseminated and stockwork ores, and in auriferous quartz vein ores; (ii) microscopic native gold, 3 to 100 µm in diameter, that occurs as fine grains or as an interstitial phase in sulfides in the disseminated and stockwork ores, and in auriferous quartz vein ores; (iii) visible native gold, up to 1 cm in diameter, in the auriferous quartz vein ores; and (iv) electrum in the auriferous quartz vein ores. The gold mineralization of the disseminated and stockwork ores consists of four stages characterized by the mineral assemblages of: (i) pyrite‐I + arsenopyrite‐I; (ii) pyrite‐II + arsenopyrite‐II; (iii) sphalerite + galena + chalcopyrite + tetrahedrite + bournonite + boulangerite + alloclasite + native gold; and (iv) native gold. In the auriferous quartz vein ores, five mineralization stages are defined by the following mineral assemblages: (i) pyrite‐I; (ii) pyrite‐II + arsenopyrite; (iii) sphalerite + galena + chalcopyrite; (iv) Ag‐rich tetrahedrite‐tennantite + bournonite + geerite + native gold; and (v) electrum. The As–Au relations in pyrite‐II and arsenopyrite suggest that gold detected as invisible gold is mostly attributed to Au+1 in those minerals. By applying the arsenopyrite geothermometer to arsenopyrite‐II in the disseminated and stockwork ores, crystallization temperature and logfs2 are estimated to be 365 to 300 °C and –7.5 to –10.1, respectively.  相似文献   

11.
The Martabe Au–Ag deposit, North Sumatra Province, Indonesia, is a high sulfidation epithermal deposit, which is hosted by Neogene sandstone, siltstone, volcanic breccia, and andesite to basaltic andesite of Angkola Formation. The deposit consists of six ore bodies that occurred as silicified massive ore (enargite–luzonite–pyrite–tetrahedrite–tellurides), quartz veins (tetrahedrite–galena–sphalerite–chalcopyrite), banded sulfide veins (pyrite–tetrahedrite–sphalerite–galena) and cavity filling. All ore bodies are controlled by N–S and NW–SE trending faults. The Barani and Horas ore bodies are located in the southeast of the Purnama ore body. Fluid inclusion microthermometry, and alunite‐pyrite and barite‐pyrite pairs sulfur isotopic geothermometry show slightly different formation temperatures among the ore bodies. Formation temperature and salinity of fluid inclusions of the Purnama ore body range from 200 to 260 C and from 6 to 8 wt.% NaCl equivalent, respectively. Formation temperature and salinity of fluid inclusions of the Barani ore body range from 200 to 220 °C and from 0 to 2.5 wt.% NaCl equivalent and those of the Horas ore body range from 240 to 275 °C and from 2 to 3 wt.% NaCl equivalent, respectively. The Barani and Horas ore bodies are less silicified and sulfides are less abundant than the Purnama ore body. A relationship between enthalpy and chloride content indicates mixing of hot saline fluids with cooler dilute fluids during the mineralization of each of the ore bodies. The δ18O values of quartz samples from the southeast ore bodies exhibit a wide range from +4.2 to +12.9‰ with an average value of +7.0‰. The δ18O values of H2O estimated from δ18O values of quartz, barite and calcite confirm the oxygen isotopic shift to near meteoric water trend, which support the incorporation of meteoric water. Salinity of the fluid inclusions decrease from >5 wt.% NaCl equivalent in the Purnama ore body to <3 wt.% NaCl equivalent in the Barani ore body, indicating different fluid systems during mineralization. The δ34S values of sulfide and sulfate in Purnama range from ? 4.2 to +5.5‰ and from +1.2 to +26.7‰, those in the Barani range from ? 4.3 to +26.4‰ and from +3.9 to +18.5‰ and those in the Horas ore body range from ? 11.8 to +3.5‰ and from +1.4 to +25.7‰, respectively. The δ34S of total bulk sulfur in southeastern ore bodies (Σδ34S) was estimated to be approximately +6‰. The estimated sulfur fugacity during formation of the Purnama and Horas ore bodies is relatively high. It was between 10?4.8 and 10?10.8 atm at 220 to 260 °C. Tellurium fugacity was between 10?7.8 and 10?9.5 atm at 260 °C and between 10?9 and 10?10.6 atm at 220 °C in the Purnama ore body. The Barani ore body was formed at lower fS2, lower than about 10?14 atm at 200 to 220 °C based on the presence of arsenopyrite and pyrrhotite in the early stage, and between 10?14 and 10?12 atm based on the existence of enargite and tennantite in the last stage. © 2016 The Society of Resource Geology  相似文献   

12.
The Ortaklar VMS deposit is hosted in the Koçali Complex consisting of basalts and deep sea pelagic sediments, which formed by rifting and continental break-up of the southern Neotethyan in Late Triassic. The basalts are of NMORB-type without notable crustal contamination. From the surface to depth, the Ortaklar deposit consists of a gossan zone, a thick massive ore zone and a poorly developed stockwork zone. Primary mineralisation is characterised by distinctive facies including sulphide breccias (proximal), graded beds (distal), stockworks and chimney fragments. Ore mineral abundances decrease in the order of pyrite, magnetite, chalcopyrite, and sphalerite. Two distinct phases of mineralisation, massive magnetite and massive sulphide, are present in the Ortaklar deposit. Textural evidence (e.g., magnetite replacing sulphides) and the spatial relationships with the host rocks indicate that magnetite and sulphide minerals were generated in different stages. The transition from sulphide to magnetite mineralisation is interpreted to relate to variation in H2S content of ore fluids. The 1st stage massive sulphide ore might have formed by early hydrothermal fluids rich in Fe and H2S. The 2nd stage massive magnetite might have formed by later neutral hydrothermal fluids rich in Fe but poor in H2S, replacing the pre-existing sulphide ore.The alteration patterns, mineral paragenesis, lithological features (massive ore-stockwork ore-gossan) of the Ortaklar deposit together with its trace elements, Cu-Pb-Zn-Au-Ag and REE signatures are all consistent with a Cyprus-type VMS system. The δ34S values in pyrite and chalcopyrite samples range from 2.6 to 5.7‰, indicating that the hydrothermal fluids were associated with sub-seafloor igneous activity, typical of Cyprus-type VMS deposits. However, magnetite formed later than sulphide minerals in the Ortaklar deposit, contrasting with typical Cyprus-type VMS deposits where magnetite generally occurs in lower sections. Consequently, although the Ortaklar deposit generally conforms to Cyprus-type deposits, it is distinguished from them by its late stage and high magnetite concentration. Thus, the Ortaklar deposit is thought to be an exceptional and perhaps unique Cyprus-type VMS deposit.  相似文献   

13.
The Chehugou Mo–Cu deposit, located 56 km west of Chifeng, NE China, is hosted by Triassic granite porphyry. Molybdenite–chalcopyrite mineralization of the deposit mainly occurs as veinlets in stockwork ore and dissemination in breccia ore, and two ore‐bearing quartz veins crop out to the south of the granite porphyry stock. Based on crosscutting relationships and mineral paragenesis, three hydrothermal stages are identified: (i) quartz–pyrite–molybdenite ± chalcopyrite stage; (ii) pyrite–quartz ± sphalerite stage; and (iii) quartz–calcite ± pyrite ± fluorite stage. Three types of fluid inclusions in the stockwork and breccia ore are recognized: LV, two‐phase aqueous inclusions (liquid‐rich); LVS, three‐phase liquid, vapor, and salt daughter crystal inclusions; and VL, two‐phase aqueous inclusions (gas‐rich). LV and LVS fluid inclusions are recognized in vein ore. Microthermometric investigation of the three types of fluid inclusions in hydrothermal quartz from the stockwork, breccia, and vein ores shows salinities from 1.57 to 66.75 wt% NaCl equivalents, with homogenization temperatures varying from 114°C to 550°C. The temperature changed from 282–550°C, 220–318°C to 114–243°C from the first stage to the third stage. The homogenization temperatures and salinity of the LV, LVS and VL inclusions are 114–442°C and 1.57–14.25 wt% NaCl equivalent, 301–550°C and 31.01–66.75 wt% NaCl equivalent, 286–420°C and 4.65–11.1 wt% NaCl equivalent, respectively. The VL inclusions coexist with the LV and LVS, which homogenize at the similar temperature. The above evidence shows that fluid‐boiling occurred in the ore‐forming stage. δ34S values of sulfide from three type ores change from ?0.61‰ to 0.86‰. These δ34S values of sulfide are similar to δ34S values of typical magmatic sulfide sulfur (c. 0‰), suggesting that ore‐forming materials are magmatic in origin.  相似文献   

14.
Fourteen stratiform, stratabound and vein-type sulphide occurrences in the Upper Allochthon of the Central–North Norwegian Caledonides have been studied for their sulphur, oxygen and hydrogen isotope composition. Depositional ages of host rocks to the stratabound and stratiform sulphide occurrences range from 590 to 640?Ma. The sulphides and their host rocks have been affected by polyphase deformation and metamorphism with a peak temperature of 650?°C dated to 432?Ma. A total of 104 sulphide and 2 barite samples were analysed for δ34S, 16 whole-rock and quartz samples for δ18O and 12 samples of muscovite for δD. The overall δ34S values range from ?14 to +31‰ with the majority of sampled sulphides lying within a range of +4 to +15‰. In most cases δ34S within each hand specimen behaves in accordance with the equilibrium fractionation sequence, δ34Sgn34Scp34Ssph34Spy. A systematic increase in δ34S from the vein sulphides (?8‰) through schist/amphibolite-hosted (+6‰) and schist-hosted (+7 to +12‰) to dolomite-hosted (+12 to +31‰) occurrences is documented. The δ34S averages of the stratiform schist-hosted sulphides are 17 to 22‰ lower than in the penecontemporaneous seawater sulphate. The Bjørkåsen (+4 to +6‰) occurrence is a volcanogenic massive sulphide (VMS) transitional to sedimentary massive sulphide (SMS), exhalative, massive, pyritic deposit of Cu–Zn–Pb sulphides formed by fluids which obtained H2S via high-temperature reduction of seawater sulphate by oxidation of Fe2+ during the convective circulation of seawater through underlying rock sequences. The Raudvatn, volcanic-hosted, disseminated Cu sulphides (+6 to +8‰) obtained sulphur via a similar process. The Balsnes, stratiform, ‘black schist’-hosted, pyrite–pyrrhotite occurrence (?6 to ?14‰) is represented by typical diagenetic sulphides precipitated via bacteriogenic reduction of coeval (ca. 600?Ma) seawater sulphate (+25 to +35‰) in a system open to sulphate supply. The δ34S values of the Djupvik–Skårnesdalen (+7 to +12‰), Hammerfjell (+5 to 11‰), Kaldådalen (+10 to +12‰) and Njallavarre (+7 to +8‰) stratiform, schist-hosted, massive and disseminated Zn–Pb (±Cu) sulphide occurrences, as well as the stratabound, quartzite-hosted, Au-bearing arsenopyrite occurrence at Langvatnet (+7 to +11‰), suggest that thermochemically reduced connate seawater sulphate was a principal sulphur source. The Sinklien and Tårstad, stratabound, dolomite- and dolomite collapse breccia-hosted, Zn (±Cu–Pb) sulphides are marked by the highest enrichment in 34S (+20 to +31‰). The occurrences ?are?assigned to the Mississippi-Valley-type deposits.?High δ34S values require reduction/replacement of contemporaneous (ca. 590?Ma) evaporitic sulphate (+23 to +34‰) with Corg-rich fluids in a closed system. The Melkedalen (+12 to +15‰), stratabound, fault-controlled, Cu–Zn sulphide deposit is hosted by the ca. 595?Ma dolomitised Melkedalen marble. The deposit is composed of several generations of ore minerals which formed by replacement of host dolomite. Polyphase hydrothermal fluids were introduced during several reactivation episodes of the fault zone. The positive δ34S values with a very limited fractionation (<3‰) are indicative of the sulphide-sulphur generated through abiological, thermochemical reduction of seawater sulphate by organic material. The vein-type Cu (±Au–W) occurrences at Baugefjell, Bugtedalen and Baugevatn (?8 to ?4‰) are of hydrothermal origin and obtained their sulphur from igneous sources with a possible incorporation of sedimentary/diagenetic sulphides. In a broad sense, all the stratiform/stratabound, sediment-hosted, sulphide occurrences studied formed by epigenetic fluids within two probable scenarios which may be applicable separately or interactively: (1) expulsion of hot metal-bearing connate waters from deeper parts of sedimentary basins prior to nappe translation (late diagenetic/catagenetic/epigenetic fluids) or (2) tectonically driven expulsion in the course of nappe translation (early metamorphic fluids). A combination of (1) and (2) is favoured for the stratabound, fault-controlled, Melkedalen and Langvatnet occurrences, whereas the rest are considered to have formed within option (1). The sulphides and their host rocks were transported from unknown distances and thrust on to the Fennoscandian Shield during the course of the Caledonian orogeny. The displaced/allochthonous nature of the Ofoten Cu–Pb–Zn ‘metallogenetic province’ would explain the enigmatically high concentration of small-scale Cu–Pb–Zn deposits that occur only in this particular area of the Norwegian Caledonides.  相似文献   

15.
The Shurab Sb-polymetallic mineralization is a subvolcanic rock-hosted epithermal deposit and located in north Lut Block, eastern Iran. It is one of the most important deposits of the Iranian East Magmatic Assemblage (IEMA) in which numerous Middle-Cenozoic precious and base metals deposits occur. The main lithological units in the area are Paleogene subvolcanic intrusions and minor Jurassic sedimentary rocks. Mineralization occurs as veins in a series of NW-SE and E-W trending faults and fractures in the Eocene-Oligocene dacite and andesite subvolcanic rocks. Mineralization at the Shurab deposit can be subdivided into four stages: pre-ore stage, Cu-Zn-Pb ore stage, Sb-Ag ± As ore stage and post-ore stage. The total sulfide content of the veins in the area is variable, ranging from 1 to 50%, and is dominated by stibnite, chalcopyrite, galena, Fe-poor sphalerite and pyrite with minor chalcostibite, Ag-tetrahedrite and bournonite; gangue minerals are mainly quartz and calcite. Silicic, argillic, propylitic, and sericitic, are the most obvious wall rock alterations. Microthermometric measurements of primary liquid-rich fluid inclusions in quartz and sphalerite indicate that the veins were formed at temperatures between 115 and 290 °C from fluids with salinities between 0.7 and 16.2 wt% NaCl eq., suggesting an epithermal origin. The δ34S values of pyrite, chalcopyrite and galena vary between -2.5 and 0.8‰, and δ18O values of quartz range between 12.5 and 14.8‰. It is inferred that the Shurab mineralization is of epithermal origin, related to an Eocene-Oligocene magmatic geothermal system involving fluids of magmatic and meteoric origin.  相似文献   

16.
The Jinshachang lead–zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan–Yunnan–Guizhou(SYG) Pb–Zn–Ag multimetal mineralization area in China.Sulfides minerals including sphalerite,galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite,quartz,and barite,making this deposit distinct from most lead–zinc deposits in the SYG.This deposit is controlled by tectonic structures,and most mineralization is located along or near faults zones.Emeishan basalts near the ore district might have contributed to the formation of orebodies.The δ34S values of sphalerite,galena,pyrite and barite were estimated to be 3.6‰–13.4‰,3.7‰–9.0‰,6.4‰ to 29.2‰ and 32.1‰–34.7‰,respectively.In view of the similar δ34S values of barite and sulfates being from the Cambrian strata,the sulfur of barite was likely derived from the Cambrian strata.The homogenization temperatures(T ≈ 134–383°C) of fluid inclusions were not suitable for reducing bacteria,therefore,the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district.Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur,it was not the main mechanism.Considering other aspects,it can be suggested that sulfur of sulfides should have been derived from magmatic activities.The δ34S values of sphalerite were found to be higher than those of coexisting galena.The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions,suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.  相似文献   

17.
The Lengshuikeng ore district in east-central China has an ore reserve of ~43 Mt with an average grade of 204.53 g/t Ag and 4.63 % Pb?+?Zn. Based on contrasting geological characteristics, the mineralization in the Lengshuikeng ore district can be divided into porphyry-hosted and stratabound types. The porphyry-hosted mineralization is distributed in and around the Lengshuikeng granite porphyry and shows a distinct alteration zoning including minor chloritization and sericitization in the proximal zone; sericitization, silicification, and carbonatization in the peripheral zone; and sericitization and carbonatization in the distal zone. The stratabound mineralization occurs in volcano-sedimentary rocks at ~100–400 m depth without obvious zoning of alterations and ore minerals. Porphyry-hosted and stratabound mineralization are both characterized by early-stage pyrite–chalcopyrite–sphalerite, middle-stage acanthite–native silver–galena–sphalerite, and late-stage pyrite–quartz–calcite. The δ34S values of pyrite, sphalerite, and galena in the ores range from ?3.8 to +6.9‰ with an average of +2.0‰. The C–O isotope values of siderite, calcite, and dolomite range from ?7.2 to ?1.5‰ with an average of ?4.4‰ (V-PDB) and from +10.9 to +19.5‰ with an average of +14.8‰ (V-SMOW), respectively. Hydrogen, oxygen, and carbon isotopes indicate that the hydrothermal fluids were derived mainly from meteoric water, with addition of minor amounts of magmatic water. Geochronology employing LA–ICP–MS analyses of zircons from a quartz syenite porphyry yielded a weighted mean 206Pb/238U age of 136.3?±?0.8 Ma considered as the emplacement age of the porphyry. Rb–Sr dating of sphalerite from the main ore stage yielded an age of 126.9?±?7.1 Ma, marking the time of mineralization. The Lengshuikeng mineralization classifies as an epithermal Ag–Pb–Zn deposit.  相似文献   

18.
In the Eastern Pontide Region of northeastern Turkey, volcanogenic Cu-Zn-Pb deposits of the Kuroko type are widespread within the dacitic series of the Liassic-Eocene volcano-sedimentary succession. Sulfide mineralization within the studied deposits shows four different depositional styles: disseminated ore; polymetallic stockwork ores; polymetallic massive ores; and disseminated pyrite in the hanging-wall tuff units. Only the stockwork and massive ores are economically important, and usually one or the other dominates in each ore body.

The δ34S of sulfide minerals belonging to the various styles of mineralization are in the range from ?2.6 to +5.2% (VCDT): pyrite has the highest values and the galena lowest values in agreement with the usual isotopic-fractionation trends. Massive ores have heavier sulfur-isotope composition among the mineralization styles and the heaviest values are recorded in barite- and gypsum-rich deposits. The close similarity of the δ34S among the various mineralization episodes in some deposits indicates a single sulfur source having a stable and homogenous composition.

The δ34S of sulfates fall into three groups: barites and primary gypsum (15.4 to 20.4%), close to coeval seawater sulfate; one value of barite (25.4%) heavier than coeval sea water; and values of secondary gypsum (2.2 to 8.0%) either very light compared to coeval seawater sulfate, or within the range recorded from sulfide minerals. The δ34S values of pyrite disseminated in the brecciated dacite tuff units are very close to zero and similar to the ones reported for magmatic rocks, suggesting a magmatic source for the sulfur of the earliest sulfide mineralization episode. These δ34S data are not sufficient to calculate the fraction of the reduced sulfur derived from seawater sulfate, as the associated fractionation factor cannot be constrained.  相似文献   

19.
The Hoshbulak Zn–Pb deposit is located in South Tianshan, Xinjiang, China. The Zn–Pb orebody is tabular and stratoid in form and it is hosted in calcareous rocks of the Upper Devonian Tan'gaitaer Formation which were thrust over the Carboniferous system. The ores are mineralogically simple and composed mainly of sphalerite, galena, pyrite, calcite, dolomite and exhibit massive, banded, veinlets, colloidal, metasomatic, eutectic, concentric ring and microbial-like fabrics. The Co/Ni ratios of pyrite in the ores range from 0.46 to 0.90 by electron microprobe, which suggested that the Hoshbulak Zn–Pb mineralization was formed in a sedimentary environment. The REE patterns of the hydrothermal calcite coincide well with those of recrystallized micritic limestones, suggesting that the Hoshbulak Pb–Zn mineralization was closely genetically related to limestones of the Tan'gaitaer Formation. The C-, H- and O-isotopic compositions of hydrothermal calcite and dolomite in the ores yield δ13C(VPDB) values ranging from − 1.9‰ to + 2.6‰ (mean 0.79‰), δ18O(VSMOW) values from 22.41‰ to 24.67‰ (mean 23.04‰) and δD values from − 77‰ to − 102‰ for fluid inclusions. It is suggested that the ore-forming fluids, including CO2, were derived from the calcareous strata of the Tan'gaitaer Formation in association with hydrocarbon brines. The δ34S(VCDT) ranges from − 22.3‰ to − 8.5‰ for early ore-stage sulfides and from 5.9‰ to 24.2‰ with a cluster between 14.4‰ and 24.2‰ for the sulfides (pyrite, sphalerite, galena) in the main ore-stage. The ore sulfur may have been derived from evaporite rocks by thermochemical sulfate reduction (TSR) as the predominant mechanism for H2S generation. The Pb-isotopic compositions of the sulfide minerals from the Hoshbulak ores yield 206Pb/204Pb ratios from 17.847 to 18.173, 207Pb/204Pb ratios from 15.586 to 15.873 and 208Pb/204Pb ratios from 37.997 to 38.905, which indicate that the metals were sourced mainly from the Tan'gaitaer Formation. We conclude that the genesis of the Hoshbulak Mississippi Valley-type deposit was closely related to thrust faulting in the South Tianshan orogen of China.  相似文献   

20.
Late Variscan vein-type mineralization in the Iberian Pyrite Belt, related to the rejuvenation of pre-existing fractures during late Variscan extensional tectonism, comprises pyrite–chalcopyrite, quartz–galena–sphalerite, quartz–stibnite–arsenopyrite, quartz–pyrite, quartz–cassiterite–scheelite, fluorite–galena–sphalerite–chalcopyrite, and quartz–manganese oxide mineral assemblages. Studies of fluid inclusions in quartz, stibnite, and barite as well as the sulfur isotopic compositions of stibnite, galena, and barite from three occurrences in the central part of the Iberian Pyrite Belt reveal compelling evidence for there having been different sources of sulfur and depositional conditions. Quartz–stibnite mineralization formed at temperatures of about 200 °C from fluids which had undergone two-phase separation during ascent. Antimony and sulfide are most probably derived by alteration of a deeper lying, volcanic-hosted massive sulfide mineralization, as indicated by δ34S signatures from ?1.45 to ?2.74‰. Sub-critical phase separation of the fluid caused extreme fractionation of chlorine isotopes (δ37Cl between ?1.8 and 3.2‰), which correlates with a fractionation of the Cl/Br ratios. The source of another high-salinity fluid trapped in inclusions in late-stage quartz from quartz–stibnite veins remains unclear. By contrast, quartz–galena veins derived sulfide (and metals?) by alteration of a sedimentary source, most likely shale-hosted massive sulfides. The δ34S values in galena from the two study sites vary between ?15.42 and ?19.04‰. Barite which is associated with galena has significantly different δ34S values (?0.2 to 6.44‰) and is assumed to have formed by mixing of the ascending fluids with meteoric water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号