首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
测绘学   1篇
地球物理   4篇
地质学   5篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Summary Structural non-stationarity of surface roughness affects accurate morphological characterization as well as mechanical behaviour of rock joints at the laboratory scale using samples with a size below the stationarity threshold. In this paper, the effect of structural non-stationarity of surface roughness is investigated by studying the scale dependence of surface roughness and mechanical behaviour of rock joints. The results show that the structural non-stationarity mainly affects the accurate characterization of the surface roughness of the fracture samples. It also controls the amount and location of the contact areas during shear tests, which in turn affects the mechanical properties and asperity degradation of the samples. It is concluded that for accurate determination of the morphological and mechanical properties of rock joints at laboratory and field scales, samples with size equal to or larger than the stationarity threshold are required. Author’s address: Nader Fardin, Rock Mechanics Group, Department of Mining Engineering, Faculty of Engineering, University of Tehran, P.O. Box: 11365/4563, Tehran, Iran  相似文献   
2.
Leachate derived from bioleaching process contains high amount of metals that must be removed before discharging the water. Aspergillus fumigatus was isolated from a gold mine tailings and its ability to remove of As, Fe, Mn, Pb, and Zn from aqueous solutions and leachate of bioleaching processes was assessed. Batch sorption experiments were carried out to characterize the capability of fungal biomass (FB) and iron coated fungal biomass (ICFB) to remove metal ions in single and multi‐solute systems. The maximum sorption capacity of FB for As(III), As(V), Fe, Mn, Pb, and Zn were 11.2, 8.57, 94.33, 53.47, 43.66, and 70.4 mg/g, respectively, at pH 6. For ICFB, these values were 88.5, 81.3, 98.03, 66.2, 50.25, and 74.07 mg/g. Results showed that only ICFB was found to be more effective in removing metal ions from the leachate. The amount of adsorbed metals from the leachate was 2.88, 21.20, 1.91, 0.1, and 0.08 mg/g for As, Fe, Mn, Zn, and Pb, respectively. The FT‐IR analysis showed involvement of the functional groups of the FB in the metal ions sorption. Scanning electron microscopy revealed that surface morphological changed following metal ions adsorption. The study showed that the indigenous fungus A. fumigatus was able to remove As, Fe, Mn, Pb, and Zn from the leachate of gold mine tailings and therefore the potential for removing metal ions from metal‐bearing leachate.  相似文献   
3.
Many methods for modeling urban expansion are available. Most of these computational models demand a variety of large‐scale environmental and socio‐economic data to investigate the relationship between urban expansion and its driving forces. These requirements are not always fulfilled, particularly in developing countries due to a lack of data availability. This necessitates methods not suffering from data limitations to ease their application. Consequently, this research presents a morphological approach for predicting urban expansion on the basis of spatiotemporal dynamics of urban margins by investigating the interior metropolitan area of Tehran, Iran as a case study. To assess the model's performance, urban expansion is monitored from 1976 to 2012. The proposed model is evaluated to ensure that the prediction performance for the year 2012 is acceptable. For the year 2024, the model predicts Tehran's urban expansion at an overall R2 of 88%. Accordingly, it is concluded that: (1) although this approach only inputs urban margins, it represents a suitable and easy‐to‐use urban expansion model; and (2) urban planners are faced with continuing urban expansion.  相似文献   
4.
The southwestern Sabzevar basin is the north of Central Iranian Microcontinent hosts abundant mineral deposits, including exhalative Mn mineralization and Cu-Zn volcanogenic massive sulfide (VMS) deposits. Amongst them, the Nudeh Besshi-type Cu–Zn volcanogenic massive sulfide (VMS) deposit is hosted within the lower part of a Late Cretaceous volcano-sedimentary sequence composed of alkali olivine basalt flows and tuffaceous silty sandstone. Based on investigations into the ore geometry, mineralogy, and texture, we recognized three different ore facies: (1) a stockwork of sulfide-bearing quartz veins cutting across the footwall volcano-sedimentary rocks and representing the stringer zone; (2) a massive ore type, displaying replacement texture with pyrite, chalcopyrite, sphalerite, friedrichite, and minor magnetite; and (3) a bedded ore type, with laminated to disseminated pyrite and chalcopyrite. EPMA studies indicate a distinctive minor element distribution between the different ore types of the Nudeh deposit. The Fe content in the sphalerite ranges from 0.65–1.80?wt.%, indicating the Fe-poor nature of the sphalerite. However, the Cd content in sphalerite ranged between 0.164–0.278?wt.%. According to the mineral compositions, Zn, Se, and Ag are found in bornite as minor elements. In the bedded ore facies, the pyrite contains higher levels of Se (up to 0.35?wt.%). The Zn content in the friedrichite in all of the ore samples is low. The Co/Ni ratios in pyrite from the Nudeh ore are lower than those of most magmatic deposits, but are similar to those from volcanogenic deposits, and hence support the proposed hydrothermal origin of the deposit. Two generations of quartz, Q1 and Q2 in the stockwork veins, contain primary fluid inclusions and these contain two phases (liquid and vapor). The lack of vapor-rich inclusions or variable liquid/vapor ratios indicate that the fluids did not boil at the site of trapping. Salinity for both Q1 and Q2 fluid inclusions ranges between 2.2–6.8?wt.% eq. NaCl. Homogenization temperatures for inclusions in the Q1 and Q2 veins average at about 296?°C and are similar to the temperatures of hydrothermal fluids discharged through vents in many modern seafloor VMS deposit. The Nudeh Besshi-type VMS deposit appears to have formed on the seafloor and based on the salinity and temperature constraints from the underlying stockwork, a buoyancy plume model is proposed as a mechanism for precipitation.  相似文献   
5.
Previous researches concerning the behavior of sand mixed with non-plastic fine show that the void ratio related to sand grains (ec) plays a more important role in comparison with the total void ratio, where soil undrained resistance will be improved due to increase in FC at the constant ec. In spite of this fact, the recent works indicate that ec is unable to show perfectly the role of the non-plastic fines that are in voids between sand grains. For this reason, an equivalent void ratio (ec)eq has been defined that takes into account the non-plastic fine participation ratio in the soil bearing skeleton. In the present work, the generality of the expression of (ec)eq is verified. For this, a set of static undrained triaxial tests were performed. The results of tests indicate that the undrained behavior of a given sand mixed with different percentages of non-plastic fine can be described by (ec)eq. But if the grading curves of sand change, we cannot find a logic retention between (ec)eq and undrained resistance of soil, unless the physical and mechanical characteristics of soil are well introduced in expression of (ec)eq.  相似文献   
6.
The degradation and leaching of napropamide were compared between Beach Ridges Interspersed with Swales (BRIS) soil samples, and the same soil samples amended with 20 mg ha?1 of either chicken dung (CD) or palm oil mill effluent (POME). The effects of removing dissolved organic carbon (DOC) from the soil samples on napropamide degradation and leaching were also studied. The addition of CD and POME to BRIS soil increased the napropamide half‐life values to 69 and 49.5 days, respectively. Sterilization of the soil samples resulted in partial inhibition of napropamide degradation in all soil samples. The half‐lives of napropamide in BRIS soils receiving 0, 20, 100, and 200 mg kg?1 of DOC derived from CD were 43, 46.2, 53.4, and 63 days, respectively. The napropamide half‐lives in soil samples treated with 0, 20, 100, and 200 mg kg?1 of DOC derived from POME were 43, 49.2, 57.7, and 69 days, respectively. However, in the sterilized soil samples, there were no significant effects of adding DOC derived from either CD or POME on napropamide half‐lives. Incorporating either CD or POME decreased napropamide leaching and total amounts of napropamide remained in the soil columns after two pore volumes of water has been leached were higher in the amended than the non‐amended soil. The CD was more effective in decreasing napropamide leaching than the POME. There were no effects of DOC on napropamide leaching in all soil treatments.  相似文献   
7.
A column bioleaching experiment was carried out to compare the effectiveness of the fungus Aspergillus fumigatus to bioleach arsenic (As) and heavy metals from the tailings using two different methods. In the first method, which is named as distribution method (DM), the fungus was distributed in the column by means of vertical and horizontal layers of coarse sand. In the other method, named as surface applied method (SAM), the fungus was cultivated on the surface of the tailings, which was covered with a few centimeters of coarse sand. Results showed that in the DM, oxalic acid production was stimulated and maximum removal of As, Fe, Mn, and Zn was 53, 51, 81, and 62%, respectively. However, Pb removal was low (8%), which might be due to the precipitation of Pb as its oxalates. On the other hand, the maximum removal of As, Fe, Mn, Pb, and Zn were 22, 28, 37, 64, and 34%, respectively, for the SAM. Results of the sequential extraction study showed that the DM was effective in removing the water soluble, exchangeable, carbonate, and Fe/Mn oxide fractions of As, Fe, Mn, and Zn. Our study suggested that A. fumigatus has a potential to be used in remediation of heavy metal contaminated sites. Distributing the fungus throughout the entire tailings columns improved the bioleaching of heavy metals by the fungus.  相似文献   
8.
Summary This paper presents a new method for in-situ non-contact measurements of fracture roughness by using a total station (TS). The TS is a non-reflector geodetic instrument usually used for measuring control points in surveying and mapping. By using a special-developed program, the TS can be used as a point-sensor laser scanner to scan a defined area of the fracture surface automatically, in field or in laboratory, at a distance away from the target surface. A large fracture surface can be automatically scanned with a constant interval of the sampling points, both within a defined area or along a cross-section of the exposed rock face. To quantify fracture roughness at different scales and obtain different densities of the scanned points, the point interval can be selected with the minimum interval of 1 mm. A local Cartesian co-ordinate system needs to be established first by the TS in front of the target rock face to define the true North or link the measurements to a known spatial co-ordinate system for both quantitative and spatial analysis of fracture roughness. To validate the method, fracture roughness data recorded with a non-reflector TS was compared with the data captured by a high-accuracy 3D-laser scanner. Results of this study revealed that both primary roughness and waviness of fracture surfaces can be quantified by the TS in the same accuracy level as that of the high accuracy laser scanner. Roughness of a natural fracture surface can be sampled without physical contact in a maximum distance of tens of meters from the rock faces. Received May 24, 2001; accepted July 24, 2002; Published online November 19, 2002  相似文献   
9.
The Bavanat Cu–Zn–Ag Besshi-type volcanogenic massive sulfide (VMS) deposit occurs within the Surian volcano-sedimentary complex in the Sanandaj–Sirjan zone (SSZ) of southern Iran. The Surian complex is comprised of pelite, sandstone, calcareous shale, basalt, gabbro sills, and thin-bedded limestone. Mineralization occurs as stratiform sheet-like and tabular orebodies hosted mainly by greenschist metamorphosed feldspathic and quartz feldspathic sandstone, basalt, and pelites. The basalts of the Surian complex show predominantly tholeiitic to transitional affinities, with a few samples that are alkalic in composition. Primitive mantle-normalized trace and rare earth element (REE) patterns of the Surian basalts display depletions in light REE, negative anomalies of Nb, Ta, and Ti, and positive anomalies of P. Positive P anomalies are indicative of minor crustal contamination. Furthermore, Th enrichments in the mid-ocean ridge basalt-normalized patterns of the Surian basalts are characteristic of rifted arc basalts emplaced in continental margin subduction zones. The high MgO content (>6?wt.%) of most Surian basalts and low TiO2 content of two samples (0.53 and 0.62?wt.%) are characteristic of boninites. The aforementioned features of the basalts indicate arc tholeiites emplaced in intra-arc rift environments and continental margin subduction zones. U–Pb dating by laser ablation- inductively coupled plasma mass spectrometry of detrital zircons extracted from the host feldspathic and quartz feldspathic sandstone yields various ages that are predominantly Permian and Triassic; however, the youngest zircons give a mean Early Jurassic concordant U–Pb age of 191?±?12?Ma. This age, together with geological and petrochemical data, indicate that VMS mineralization formed in the Early Jurassic in pull-apart basins within the SSZ. These basins and the VMS mineralization may be temporally related to an intra-arc volcano–plutonic event associated with Neo-Tethyan oblique subduction.  相似文献   
10.
Stress reduction factor, λ, is a dimensionless coefficient in two-dimensional (2D) analysis based on convergence confinement method (CCM) of tunnel which represents stress relaxation in the tunnel walls at different excavation steps. The aim of this paper is to look into the influencing factors on parameter λ around the tunnel walls using finite difference code in order to improve the accuracy of the CCM. For this purpose, four different ground types with various tunnel radii, depths and cross section shapes are considered. Finally, the 2D analysis using uniform and variable stress reduction factors determined in this paper is compared with the 3D analysis of the tunnel. The results of this study enhance our understanding of the role of geometrical and soil material parameters of tunnel on stress relaxation around tunnel walls. The tunnel depth, soil type and tunnel shape have great influence on λ. Variable stress reduction factor enables the convergence–confinement method to predict the realistic behavior of third dimension of the tunnel and can also be used as the best alternative to 3D models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号