首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   12篇
  国内免费   9篇
地球物理   4篇
地质学   54篇
自然地理   3篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   6篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1997年   3篇
  1986年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
A relict mound of Holocene barite (BaSO4) tufa underlies the Flybye Springs, a small, barium‐rich, cold sulphur spring system in the Northwest Territories of Canada. The tufa is composed of relatively pure barite with ≤0·34 wt% Ca2+ and ≤0·77 wt% Sr2+. The mound is made up of coated bubble, raft, undulatory sheet, stromatolitic, coated grain and detrital conglomerate barite tufa. Although previously unreported in barite, these lithotypes are akin to facies found in many carbonate spring deposits. Raft and ooid‐coated grain tufa was formed via ‘inorganic’ barite precipitation in spring water ponds and tributaries where rapid oxidation of sulphide to sulphate established barite supersaturation. Undulatory sheet tufa may have formed by the reaction of dissolved barium with sulphate derived from the oxidation of extracellular polysaccharide‐rich colloidal sulphur films floating in oxygenated, barite‐saturated spring water ponds. Coated bubble, oncoid‐coated grain and stromatolitic tufa with filamentous microfossils was formed in close association with sulphur‐tolerant microbes inhabiting dysoxic and oxygenated spring water tributaries and ponds. Adsorption of dissolved barium to microbial extracellular polysaccharide probably facilitated the development of these ‘biogenic’ lithotypes. Detrital conglomerate tufa was formed by barite cementation of microdetrital tufa, allochthonous lithoclasts and organic detritus, including caribou hair. Biogenic textures, organic artefacts and microfossils in the Flybye barite tufa have survived diagenetic aggradational recrystallization and precipitation of secondary cements, indicating the potential for palaeoecological information to be preserved in barite in the geological record. Similarities between the Flybye barite tufa and carbonate spring deposits demonstrate that analogous textures can develop in chemical sedimentary systems with distinct mineralogy, biology and physiochemistry.  相似文献   
2.
The paper presents an analysis of characteristic karst tufa from Guangxi, China, which has not been studied before. A comparison with tufa from Dinaric Karst of Croatia is discussed in view of the C-type climate. The major mineral is calcite. Minor minerals are quartz and dolomite, depending on location. The content of calcium carbonate varies from 65% to 92%, and that of magnesium carbonate from 0.03% to 1.77%. Among other elements, the most abundant are Fe, from 0.02% to 1.50%, and Ti, from 0.15% to 0.27%. Many other trace elements (V, Cr, Mn, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Hg and Pb) are also present. Specific activity of radionuclides 40K, 232Th, 137Cs, 226Ra and 238U varies from sample to sample. Concentration of U in tufa is close to that reported for sedimentary carbonate. Low concentration of 137Cs indicates that this part of the world was not exposed to nuclear explosions. The concentration of 226Ra is the highest in Mashan County. The ratio 238U/226Ra (0.21-0.71) in tufa from Mashan Co  相似文献   
3.
1.IntroductionResearchonbiokarststretchfromnineteenthcentury,yetonlyrecently,moreefficientandsystematicresearchhasbeenputforwardwiththeappearanceofrelatedspecialterminologyanddetailedreviews[3,11,30,3638],anditseemsthatthereisstilllackofbiokarstinalpineenviro…  相似文献   
4.
结合水化学的野外观测及室内计算,作者对桂林岩溶试验场、四川黄龙风景区和贵州乌江渡坝区3个岩溶动力系统的碳稳定同位素特征进行了分析,进而对系统的性质、系统中CO_2的来源、碳酸盐沉积过程中的碳同位素动力分馏、水化学和钙华的成因及热水钙华的~(14)C测年等地球化学问题作了探讨。结果表明,桂林岩溶试验场属于表层岩溶作用动力系统,其中的侵蚀动力主要来源于大气降水溶解土壤中的CO_2;四川黄龙风景区属于深部岩溶动力系统,侵蚀动力来自大气降水溶解幔源的CO_2;贵州乌江渡坝区岩溶系统,虽然属于表层岩溶动力系统,但其中一部分的同位素和水化学特征已受到人类活动的重大影响。  相似文献   
5.
Many Recent and fossil freshwater tufa stromatolites contain millimetre‐scale, alternating laminae of dense micrite and more porous or sparry crystalline calcites. These alternating laminae have been interpreted to represent seasonally controlled differences in the biotic activity of microbes, and/or seasonally controlled changes in the rate of calcification. Either way, couplets of these microbially mediated alternating calcified laminae are generally agreed to represent annual seasonality. Combined stable isotope (δ18O and δ13C) and trace element (Mg, Sr, Ba) geochemistry from Recent tufa stromatolites show that seasonal climatic information is available from these calcites. Variability in δ18O (and in one case Mg concentration) has been shown to be controlled primarily by stream temperature change, usually driven by solar insolation. In arid climates, seasonal evaporation can also cause δ18O enrichment by at least 1‰. Variability in δ13C results potentially from: (1) seasonal change in plant uptake of 12C‐enriched CO2; (2) seasonal change in degassing of 12C‐enriched CO2 in the aquifer system; and (3) precipitation of calcite along the aquifer or river flow path, a process that increases δ13C of dissolved inorganic carbon (DIC) in the remaining water. Mechanisms 2 and 3 are linked because calcite precipitates in aquifers where degassing occurs, e.g. air pockets. The latter mechanism for δ13C enrichment has also been shown to cause sympathetic variation between trace element/Ca ratios and δ13C because trace elements with partition coefficients much greater than 1 (e.g. Sr, Ba) remain preferentially in solution. Since degassing in air pockets will be enhanced during decreased recharge when water saturation of the aquifer is lowest, sympathetic variation in trace element/Ca ratios and δ13C is a possible index of recharge and therefore precipitation intensity. High‐resolution geochemical data from well‐dated tufa stromatolites have great potential for Quaternary palaeoclimate reconstructions, possibly allowing recovery of annual seasonal climatic information including water temperature variation and change in rainfall intensity. However, careful consideration of diagenetic effects, particularly aggrading neomorphism, needs to be the next step. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
6.
The large, extensive tufa deposits of the semi‐arid Naukluft Mountains, Namibia are potentially important palaeoenvironmental indicators in an area with few proxy records. Tufas are reliable indicators of increased moisture availability, and have been shown to be amenable to 234U–230Th dating, although two challenges are detrital contamination and open‐system behaviour. Densely cemented tufa facies are good candidates for dating, minimising these problems. We report attempts to date five densely‐cemented units, which are only found rarely within the Naukluft deposits. We applied a detailed methodology using multiple subsample analysis, measurement of insoluble residues, application of ‘isochron’ mixing lines, and attempted open‐systems modelling, alongside observations of micromorphology and cathodoluminescence in order to assess the validity of any obtained dates. Surprisingly, densely cemented tufas were found not always to be suitable for dating. Two units contained detrital contamination, which could not be corrected for using a single leachate correction or ‘isochron’ methods. Two units contained ‘excess 230Th’. This could result under a closed‐system if initial (234U/238U) was sufficiently high. Alternatively this may be the result of open‐system behaviour, and loss of uranium, or incorporation of initial unsupported 230Th, which render samples unsuitable for 234U–230Th dating. Micromorphological appearance and cathodoluminescence behaviour are used to explore these possibilities. This study exemplifies the need for careful sample selection, and highlights the importance of analysing multiple subsamples from any tufa sample. The detailed methodology applied proves to be a powerful tool for identifying the range of problems that can be encountered when selecting suitable candidate samples for successful dating. It also shows that semi‐arid tufa sequences may contain very little material suitable for dating. A reliable age of c 80 ka was obtained for a banded unit within a large fluvial barrage, with less reliable dates suggesting tufa deposition during times since >350 ka through to the late Holocene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
黄龙的景观是在数万年的岩溶地质作用下的产物。近年来黄龙钙华出现了干涸、变黑、沙化等现象严重地影响了景观的观赏性。水资源在黄龙钙华发展变化中起着重要的作用,笔者通过收集并分析黄龙地区的监测数据,针对监测系统不健全.时序数据缺乏的特点,选用对时序数据要求不高、预测效果较好的灰色系统模型,以岩溶水体的pH值为指标预测了钙华未来的发展情况。采用地质统计学空间分析的克里金插值法,对预测结果进行插值获得了整个景区的钙华预测结果。笔者按pH值将钙华演化情况划为强侵蚀、弱侵蚀、堆积3种类型,指出黄龙钙华景观目前正处于动态平衡与消亡重组阶段。  相似文献   
8.
Groundwaters feeding travertine‐depositing rivers of the northeastern segment of the Barkly karst (NW Queensland, Australia) are of comparable chemical composition, allowing a detailed investigation of how the rate of downstream chemical evolution varies from river to river. The discharge, pH, temperature, conductivity and major‐ion concentrations of five rivers were determined by standard field and laboratory techniques. The results show that each river experiences similar patterns of downstream chemical evolution, with CO2 outgassing driving the waters to high levels of calcite supersaturation, which in turn leads to widespread calcium carbonate deposition. However, the rate at which the waters evolve, measured as the loss of CaCO3 per kilometre, varies from river to river, and depends primarily upon discharge at the time of sampling and stream gradient. For example, Louie Creek (Q = 0·11 m3 s?1) and Carl Creek (Q = 0·50 m3 s?1) have identical stream gradients, but the loss of CaCO3 per kilometre for Louie Creek is twice that of Carl Creek. The Gregory River (Q = 3·07 m3 s?1), O'Shanassy River (Q = 0·57 m3 s?1) and Lawn Hill Creek (Q = 0·72 m3 s?1) have very similar gradients, but the rate of hydrochemical evolution of the Gregory River is significantly less than either of the other two systems. The results have major implications for travertine deposition: the stream reach required for waters to evolve to critical levels of calcite supersaturation will, all others things being equal, increase with increasing discharge, and the length of reach over which travertine is deposited will also increase with increasing discharge. This implies that fossil travertine deposits preserved well downstream of modern deposition limits are likely to have been formed under higher discharge regimes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
9.
R. Drysdale  S. Lucas  K. Carthew 《水文研究》2003,17(17):3421-3441
At‐a‐station diurnal variations in carbonate hydrochemistry were measured during four observation periods at Davys Creek, a tufa‐depositing stream in central NSW, Australia. Major ion concentrations and continuously logged measurements of specific conductivity, pH and temperature showed that changes in the amount of CaCO3 deposited upstream of the study reach were directly related to changes in diurnal water temperatures, which control the rate of CO2 efflux to the atmosphere. The greatest upstream losses occurred during the mid‐afternoon water temperature peak, whereas the lowest upstream losses occurred at sunrise, when water temperatures were at their lowest. Cloudy days at all times of the year produced small diurnal water temperatures ranges (c. 2–5°C) and, consequently, relatively small changes in upstream CaCO3 loss (23–50 mg L?1) through the day. Clear sunny days, especially during summer months, produced large diurnal water temperature changes (up to c. 11°C), which in turn triggered diurnal changes in upstream CaCO3 loss of up to 100 mg L?1. By implication, the active reach of tufa deposition must advance downstream and increase in length during the evening and vice versa during the day. Given that the temperature of Davys Creek waters are a function of insolation, changes in the reach of tufa deposition under baseflow conditions are a direct function of the prevailing weather. This has implications for the palaeoclimatic interpretation of fossil tufa deposits. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
10.
The relict Fairmont Hot Springs deposit, formed largely of carbonates, covers an area of 0·5 km2, and is up to 16 m thick. The triangle‐shaped discharge apron, which broadens down‐valley, is divided into a proximal part with beds dipping at <10° and a distal part with beds dipping at 10° to 15°. The deposit is formed of the: (1) Basal Macrophyte; (2) Lower Carbonate; (3) Middle Clastic; (4) Upper Carbonate; and (5) Upper Clastic Sequences. Two charcoal samples embedded in the Lower Carbonate Sequence yielded dates of 8690 ± 90 and 8270 ± 70 cal yr bp , indicating that much of the deposit formed post‐glacially during the Early to Mid‐Holocene. Deposit aggradation ceased in the Mid to Late Holocene when the Fairmont Creek valley was incised. The Lower and Upper Carbonate Sequences, which are the thickest sequences, are composed of nearly equal parts of travertine (abiotic) and tufa (biotic), with feather dendrite travertine, radiating dendrite travertine and stromatolite tufa dominating. Competition between calcite precipitation rates and biotic growth rates controlled the distribution of tufa and travertine across the discharge apron. Calcite and biotic growth rates were controlled largely by flow velocity across the apron which, in turn, was controlled by topography and regular fluctuations in spring water discharge volume. During times of high spring discharge, slow sheet flow over the proximal part of the apron promoted stromatolite growth, whereas fast, turbulent flow on the distal part of the apron induced rapid feather dendrite formation. During times of low spring discharge, quiescent, shallow evaporative pools, conducive to radiating dendrite formation, formed on the proximal part of the apron, whereas slow flow on the distal part promoted stromatolite growth. Facies with high calcite supersaturation experienced rapid abiotic dendrite growth that precluded most biotic growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号