首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   16篇
  国内免费   49篇
测绘学   1篇
地球物理   4篇
地质学   170篇
海洋学   7篇
综合类   7篇
自然地理   5篇
  2023年   3篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   7篇
  2016年   8篇
  2015年   9篇
  2014年   11篇
  2013年   11篇
  2012年   9篇
  2011年   9篇
  2010年   4篇
  2009年   8篇
  2008年   6篇
  2007年   13篇
  2006年   13篇
  2005年   7篇
  2004年   11篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有194条查询结果,搜索用时 211 毫秒
1.
Quartz‐rich veins in metapelitic schists of the Sanandaj‐Sirjan belt, Hamadan region, Iran, commonly contain two Al2SiO5 polymorphs, and, more rarely, three coexisting Al2SiO5 polymorphs. In most andalusite and sillimanite schists, the types of polymorphs in veins correlate with Al2SiO5 polymorph(s) in the host rocks, although vein polymorphs are texturally and compositionally distinct from those in adjacent host rocks; e.g. vein andalusite is enriched in Fe2O3 relative to host rock andalusite. Low‐grade rocks contain andalusite + quartz veins, medium‐grade rocks contain andalusite + sillimanite + quartz ± plagioclase veins, and high‐grade rocks contain sillimanite + quartz + plagioclase veins/leucosomes. Although most andalusite and sillimanite‐bearing veins occur in host rocks that also contain Al2SiO5, kyanite‐quartz veins crosscut rocks that lack Al2SiO5 (e.g. staurolite schist, granite). A quartz vein containing andalusite + kyanite + sillimanite + staurolite + muscovite occurs in andalusite–sillimanite host rocks. Textural relationships in this vein indicate the crystallization sequence andalusite to kyanite to sillimanite. This crystallization sequence conflicts with the observation that kyanite‐quartz veins post‐date andalusite–sillimanite veins and at least one intrusive phase of a granite that produced a low‐pressure–high‐temperature contact aureole; these relationships imply a sequence of andalusite to sillimanite to kyanite. Varying crystallization sequences for rocks in a largely coherent metamorphic belt can be explained by P–T paths of different rocks passing near (slightly above, slightly below) the Al2SiO5 triple point, and by overprinting of multiple metamorphic events in a terrane that evolved from a continental arc to a collisional orogen.  相似文献   
2.
江西省武功山地区浒坑钨矿床的Re-Os年龄及其地质意义   总被引:2,自引:0,他引:2  
刘珺 《地质学报》2008,82(11):1572-1579
浒坑钨矿床是位于江西省中部武功山成矿带的大型石英脉型黑钨矿床。为了确定该矿床的成矿时代,笔者选取了浒坑含钨石英脉中与黑钨矿共生的辉钼矿进行了高精度Re-Os同位素定年,并获得5个辉钼矿样品的Re-Os等时线年龄和模式加权平均年龄分别为150.2±2.2Ma和149.82±0.92Ma。测年数据表明浒坑钨矿床的成矿时代为150Ma左右,是华南地区中生代大规模成岩成矿作用高峰期的产物。辉钼矿含铼较低,表明成矿物质可能来自壳源,与形成浒坑花岗岩体的燕山期重熔S型花岗岩岩浆活动有关。该矿床形成于燕山期岩石圈伸展减薄环境。  相似文献   
3.
Supergene nickel deposits of New Caledonia that have been formed in the Neogene by weathering of obducted ultramafic rocks are controlled by fracture development. The relationship of tropical weathering and tectonic structures, faults and tension gashes, have been investigated in order to determine whether fractures play a passive role only, as previously thought; or alternatively, if brittle tectonics was acting together with alteration. Observation of time‐relationship, textures, and mineralogy of various fracture fills and fault gouges shows that active faulting has played a prominent role not only in facilitating drainage and providing room for synkinematic crystallization of supergene nickel silicate, but also in mobilizing already formed sparse nickel ore, producing the very high grade ore nicknamed “green gold”.  相似文献   
4.
The formation of late‐stage veins can yield valuable information about the movement and composition of fluids during uplift and exhumation of high‐pressure terranes. Albite veins are especially suited to this purpose because they are ubiquitously associated with the greenschist facies overprint in high‐pressure rocks. Albite veins in retrogressed metabasic rocks from high‐pressure ophiolitic units of Alpine Corsica (France) are nearly monomineralic, and have distinct alteration haloes composed of actinolite + epidote + chlorite + albite. Estimated PT conditions of albite vein formation are 478 ± 31 °C and 0.37 ± 0.14 GPa. The PT estimates and petrographic constraints indicate that the albite veins formed after the regional greenschist facies retrogression, in response to continued decompression and exhumation of the terrane. Stable isotope geochemistry of the albite veins, their associated alteration haloes and unaltered hostrocks indicates that the vein‐forming fluid was derived from the ophiolite units and probably from the metabasalts within each ophiolite slice. That the vein‐forming fluid was locally derived means that a viable source of fluid to form the veins was retained in the rocks during high‐pressure metamorphism, indicating that the rocks did not completely dehydrate. This conclusion is supported by the observation of abundant lawsonite at the highest metamorphic grades. Fluids were liberated during retrogression via decompression dehydration reactions such as those that break down hydrous high‐pressure minerals like lawsonite. Albite precipitation into veins is sensitive to the solubility and speciation of Al, which is more pressure sensitive than other factors which might influence albite vein formation such as silica saturation or Na:K fluid ratios. Hydraulic fracturing in response to fluid generation during decompression was probably the main mechanism of vein formation. The associated pressure decrease with fracturing and fluid decompression may also have been sufficient to change the solubility of Al and drive albite precipitation in fracture systems.  相似文献   
5.
6.
羌塘盆地最大规模沥青脉的发现及其意义   总被引:12,自引:1,他引:12       下载免费PDF全文
在羌塘盆地已经发现了190余处油气显示。近年笔者在盆地北部晚侏罗世地层中发现了迄今最大规模的沥青脉。研究结果表明,该沥青脉产出于上侏罗统索瓦组地层之中,地层下部系与沥青脉的形成有一定关系的中株罗统夏里组局部含油气显示的盐丘。沥青族组分(%)为:饱和烃5.72、芳烃18.46、沥青质52.37、非烃23.45,说明核沥青脉经过了运移、氮化的过程。同时,沥青脉产出于复背斜范围内,利于油气聚集成藏。这一发现对于羌塘盆地的油气地质的作用具有现实意义。  相似文献   
7.
彭晓蕾  刘立  计桂霞 《世界地质》2003,22(4):326-330,403
砂宝斯矿区的成矿围岩为长石石英砂岩,砂岩被多期次的石英脉、方解石脉和高岭石脉所穿切,这些多矿物脉是热液流体运移的结果。矿物脉形成过程中对围岩进行了热改造,使砂岩发生了压溶作用、胶结作用和溶蚀作用,形成了蚀变砂岩。由于流体酸碱性和温压的变化,孔隙水介质的性质由酸性向碱性转变,在酸性成岩环境下形成的蚀变高岭石、伊利石将转变成绿泥石、绢云母等。绢云母的大量出现,石英次生加大和自生粘土矿物的形成均是热液流体活动的产物。  相似文献   
8.
黄河三角洲的边滩、心滩上发育了大量冲蚀沟槽(冲槽).这些冲蚀沟槽深数厘米至1m~2m,宽数厘米至数米,长数十厘米至十几、二十余米,但以深数十厘米,宽数厘米至十余厘米,长数米者多见。形态多样,有直立板片状、直立楔状、“⊥”状、梯形状、“U”形状及树枝状等,其内有时被风成砂充填。经成岩作用后,它们便会转变成砂岩岩脉(岩墙、岩床)。因此,冲蚀沟槽的(砂)充填可能是一种砂岩岩脉(岩墙、岩床)的形成方式.  相似文献   
9.
The Tertiary Mineoka ophiolite occurs in a fault zone at the intersection of the Honshu and Izu forearcs in central Japan and displays structural evidence for three major phases of deformation: normal and oblique-slip faults and hydrothermal veins formed during the seafloor spreading evolution of the ophiolite at a ridge-transform fault intersection. These structures may represent repeated changes in differential stress and pore-fluid pressures during their formation. The second series of deformation is characterized by oblique thrust faults with Riedel shears and no significant mineral veining, and is interpreted to have resulted from transpressional dextral faulting during the obduction of the ophiolite through oblique convergence and tectonic accretion. This deformation occurred at the NW corner of a TTT-type (trench–trench–trench) triple junction in the NW Pacific rim before the middle Miocene. The third series of deformation of the ophiolite is marked by contractional and oblique shear zones, Riedel shears, and thrust faults that crosscut and offset earlier structures, and that give the Mineoka fault zone its lenticular (phacoidal) fabric at all scales. This deformation phase was associated with the establishment and the southward migration of the TTT Boso triple junction and with the kinematics of oblique subduction and forearc sliver fault development. The composite Mineoka ophiolite hence displays rocks and structures that evolved during its complex geodynamic history involving seafloor spreading, tectonic accretion, and triple junction evolution in the NW Pacific Rim.  相似文献   
10.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号