首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2007年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Based on the hydrographic data in austral summer during the 22nd Antarctic Expedition of China(2005/2006),some features can be found about the northern margin of Emery ice shelf as follows.The heat content in the surface layer(0-50 m) at the eastern end and the western end of the ice-shelf margin is much higher than that at the middle.The upper mixing-layer depth and the seasonal thermocline depth at the middle of the ice-shelf northern margin are much shallower than those at the both ends.However there is much less difference between the middle and the ends in the bottom layer.The remote sensing photos show that the inhomogeneity in the surface-layer water is closely related to the spatial distribution of the floes and polynia in the area.  相似文献   
2.
The ability of cell to modulate the fluidity of plasma membrane was crucial to the survival of microorganism at low temperature. Plasma membrane proteins, fatty acids and carotenoids profiles of Antarctic psychrophilc yeast Rhodotorula sp. NJ298 were investigated at -3 ℃, 0 ℃ and 8 ℃. The results showed that plasma membrane protein content was greater at -3 ℃ than that at 8 ℃, and a unique membrane polypeptide composition with an apparent molecular mass of 94.7 kDa was newly synthesized with SDS-PAGE analysis; GC analysis showed that the main changes of fatty acids were the percentage of unsaturated fatty acids (C18∶ 1 and C18∶ 2) and shorter chain saturated fatty acid (C10∶ 0) increased along with the decrease of the culture temperature from 8 ℃ to -3 ℃; HPLC analysis indicated that astaxanthin was the major functional carotenoids of the plasma membrane, percentage of which increased from 54.6±1.5% at 8 ℃ to 81.9±2.1% at -3 ℃. However the fluidity of plasma membrane which was determined by measuring fluorescence anisotropy was similar at -3 ℃, 0 ℃ and 8 ℃. Hence these changes in plasma membrane's characteristics were involved in the cellular cold-adaptation by which NJ298 could maintain normal plasma membrane fluidity at near-freezing temperature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号