首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   3篇
自然地理   1篇
  2007年   1篇
  2002年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Lower Pleistocene sediments recovered in boreholes from the Aberdeen Ground Formation in the central North Sea indicate that the unit was deposited in a delta front to prodelta/shallow, open shelf marine setting. Possible estuarine and clastic nearshore marine deposits have been identified on the western margin of the basin. The delta front sediments consist of interbedded, structureless to laminated sands and muds with organic debris, ferruginous nodules and common soft sediment deformation structures. Sporadic rippled and graded beds, basal scours to beds and starved ripples suggest periodic wave–current reworking. Prodelta/shelf marine sediments are predominantly argillaceous with only occasional thin sand beds and rare phosphatic bands. One exceptionally thick sand body or submarine channel-fill although this remains uncertain. The estuarine/clastic nearshore marine sediments include coarse channel-lag deposits and rippled and laminated subtidal sands. A rich microfossil assemblage recovered from the prodelta/shelf marine sequence indicates that deposition occurred under fluctuating climatic conditions.  相似文献   
2.
3.
Excavating geography's hidden spaces   总被引:1,自引:1,他引:1  
This paper considers alternative ways to approach teaching and researching the history and philosophy of geography. While exploring the geography department as a previously marginalized space in accounts of disciplinary change, three different types of source are identified: first, less formal kinds of documentation; second, material sites; and third, a bodily archive of action, gesture and movement. In combination, these are shown to open up new possibilities for localized, grass–roots versions of geography's pasts and presents.  相似文献   
4.
The shore‐normal transport of fine‐grained sediments by shelf turbidity currents has been the focus of intense debate over the last 20 years. Many have argued that turbidity currents are unlikely to be a major depositional agent on the shelf. However, sedimentological, architectural, stratigraphic and palaeogeographic data from the Campanian Aberdeen Member, Book Cliffs, eastern Utah suggests otherwise and clearly demonstrates that storm‐generated and river flood‐generated underflows can transport a significant volume of fine‐grained sediments across the shelf. These across‐shelf flowing turbidity currents cut large subaqueous channel complexes up to 7 m deep, tens of kilometres basinward of their time‐equivalent shoreface. The shelf channels were filled with organic‐rich siltstones, mudstones and very fine‐ to fine‐grained Bouma‐like sandstone beds, including wave‐modified turbidites, hyperpycnites and classical turbidites. Deposition was above storm wave base. Palaeocurrent data reveal an overwhelmingly dominant across‐shelf (east–south‐east), offshore‐directed transport trend. Tectonic activity and/or concomitant palaeogeographic reorganization of the basin may favour the generation of these turbidite‐rich shelf deposits by altering the relative balance of wave versus fluvial energy. Increased erosion and sediment supply rates, because of tectonic uplift of the hinterland, may have increased the probability of fluvial dominance along the coastline and, hence, the possibility of submarine channelization in front of the river mouths. Additionally, the coastline may have become more sheltered from direct wave energy, thus allowing the fluvial processes to dominate. Seasonal increases in rainfall and storm activity may also favour the generation of across‐shelf underflows. On wave‐dominated shorelines, isolated shelf channels and lobes are most likely to be found down‐dip of fluvial‐feeder systems in relatively high sediment supply settings. These features are also most likely to occur in systems tracts that straddle a sequence boundary, especially those which are tectonically generated, as these would enhance the potential for altering basin morphology and, hence, the balance of fluvial and wave energy. Isolated shelf channels are recognized in older and younger strata in the Book Cliffs region, implying that wave‐supported gravity flows were a recurrent phenomena in the Campanian of Utah. It is probable that isolated shelf bodies are preserved in other stratigraphic intervals in the Cretaceous Western Interior of North America, and other basins worldwide, and are currently being overlooked or misidentified. Shoreface‐to‐shelf facies models should be revised to incorporate turbidite‐rich shelf deposits in some shelf settings.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号