首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2902篇
  免费   333篇
  国内免费   407篇
测绘学   389篇
大气科学   404篇
地球物理   596篇
地质学   917篇
海洋学   128篇
天文学   46篇
综合类   179篇
自然地理   983篇
  2024年   12篇
  2023年   40篇
  2022年   135篇
  2021年   190篇
  2020年   169篇
  2019年   148篇
  2018年   121篇
  2017年   138篇
  2016年   133篇
  2015年   120篇
  2014年   168篇
  2013年   225篇
  2012年   144篇
  2011年   155篇
  2010年   105篇
  2009年   140篇
  2008年   134篇
  2007年   159篇
  2006年   167篇
  2005年   140篇
  2004年   130篇
  2003年   126篇
  2002年   88篇
  2001年   101篇
  2000年   81篇
  1999年   65篇
  1998年   44篇
  1997年   56篇
  1996年   43篇
  1995年   37篇
  1994年   26篇
  1993年   22篇
  1992年   15篇
  1991年   15篇
  1990年   9篇
  1989年   11篇
  1988年   15篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1979年   1篇
  1978年   1篇
排序方式: 共有3642条查询结果,搜索用时 15 毫秒
1.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
2.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   
3.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
4.
Abstract

The concept of a bioeconomy has been placed central in formation of a Swedish National Forest Program (NFP). Drawing on Hajer’s conceptual framework of storylines, we present a discourse analysis of the working group reports underlying the establishment of the NFP strategy. We ask what stories about Swedish forests come to dominate the NFP process, how well they reflect the commitment of balancing economic, social and environmental interests, and what role the concept of a bioeconomy, has on the formation of these stories. Storylines of Swedish forests in the bioeconomy unite wider European discourses on the bioeconomy and climate change with historical Swedish forest policy discourses, revitalizing a discourse coalition comprising the state and the industry. Particular to the Swedish discourse is the strong emphasis on creating consensus around a single story of the forest-based bioeconomy.  相似文献   
5.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
6.
New Earth observation missions and technologies are delivering large amounts of data. Processing this data requires developing and evaluating novel dimensionality reduction approaches to identify the most informative features for classification and regression tasks. Here we present an exhaustive evaluation of Guided Regularized Random Forest (GRRF), a feature selection method based on Random Forest. GRRF does not require fixing a priori the number of features to be selected or setting a threshold of the feature importance. Moreover, the use of regularization ensures that features selected by GRRF are non-redundant and representative. Our experiments based on various kinds of remote sensing images, show that GRRF selected features provides similar results to those obtained when using all the available features. However, the comparison between GRRF and standard random forest features shows substantial differences: in classification, the mean overall accuracy increases by almost 6% and, in regression, the decrease in RMSE almost reaches 2%. These results demonstrate the potential of GRRF for remote sensing image classification and regression. Especially in the context of increasingly large geodatabases that challenge the application of traditional methods.  相似文献   
7.
Sustainable fuels legislation and volatility in energy prices have put additional pressures on the forestry sector to intensify the harvesting of biomass for “advanced biofuel” production. To better understand how residual biomass removal after harvest affects forest hydrology in relatively low slope terrain, a Before-After-Control-Impact (BACI) study was conducted in the USDA Forest Service's Marcell Experimental Forest, Minnesota, USA. Hydrological measurements were made from 2010–2013 on a forested hillslope that was divided into three treatment blocks, where one block was harvested and residual biomass removed (Biomass Removed), the second was harvested and residual biomass left (Biomass Left), and the last block was left as an Unharvested Control. The pre-harvest period (2 years) was 2010–11 and post-harvest (2 years) was 2012–13. Water table elevation at the upslope and downslope position, subsurface runoff, and soil moisture were measured between May–November. Mixed effect statistical models were used to compare both the before-after and “control” treatment ratios (ratios between harvested hillslopes and the Unharvested Control hillslope). Subsurface runoff significantly increased (p < .05) at both harvested hillslopes but to a greater degree on the Biomass Left hillslope. Greater subsurface runoff volumes at both harvested hillslopes were driven by substantial increases during fall, with additional significant increases during summer on the Biomass Left hillslope. The hydrological connectivity, inferred from event runoff ratios, increased due to harvesting at both hillslopes but only significantly on the Biomass Left hillslope. The winter harvest minimized soil disturbance, resulting in no change to the effective hydraulic conductivity distribution with depth. Thus, the observed hydrological changes were driven by increased effective precipitation and decreased evapotranspiration, increasing the duration that both harvested hillslopes were hydrologically active. The harvesting of residual biomass appears to lessen hydrological connectivity relative to leaving residual biomass on the hillslope, potentially decreasing downstream hydrological impacts of similar forestry operations.  相似文献   
8.
为了揭示黑龙江哈尔滨白渔泡国家湿地公园沼泽、林地和农田土壤物理、化学和生物性质的差异,于2018年7月25日~8月2日,在湿地公园内,在天然芦苇(Phragmites australis)沼泽、林地、旱田和水田中设置采样地,采集不同深度(0~10 cm、10~20 cm和20~30 cm)的土壤样品,测定土壤样品的物理、化学和生物指标。研究结果表明,白渔泡国家湿地公园不同采样地土壤指标存在差异;与天然芦苇沼泽土壤相比,其它采样地土壤的含水量明显偏低,土壤全氮、全磷、碱解氮和有机质含量都明显偏小,水田土壤速效磷含量偏大;天然芦苇沼泽土壤脲酶、硝酸还原酶、纤维素酶、蛋白酶和β-葡萄糖苷酶活性都高于林地和农田土壤,水田0~10 cm和10~20 cm深度土壤的硝酸还原酶活性显著高于旱田和林地;与天然芦苇沼泽土壤相比,旱田土壤小于0.25 mm的小团聚体含量偏大,而其它采样地土壤的各粒级团聚体的比例变化较小,水田土壤团聚体平均重量直径比天然芦苇沼泽和旱田土壤低。  相似文献   
9.
CHANGE OF NUTRIENT IMPORT AND EXPORT IN PROCESS OF RAINFALL IN AILAO MOUNTAIN OF YUNNAN PROVINCEGanJianmin(甘健民);XueJingyi(薛敬意...  相似文献   
10.
广西森林旅游资源多达 816 .7万hm2 ,景点 2 80个 ,内容丰富 ,前景广阔 ,加强广西森林旅游资源特色的开发 ,有利于促进广西旅游业可持续发展 ,有利于经济、社会、环境效益的提高及人们的文化素质和生活质量的提高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号