首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
大气科学   4篇
地球物理   2篇
地质学   9篇
自然地理   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2011年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
Simultaneous measurements on physical, chemical and optical properties of aerosols over a tropical semi-arid location, Agra in north India, were undertaken during December 2004. The average concentration of total suspended particulates (TSP) increased by about 1.4 times during intense foggy/hazy days. Concentrations of SO4 2−, NO3 , NH4 + and Black Carbon (BC) aerosols increased by 4, 2, 3.5 and 1.7 times, respectively during that period. Aerosols were acidic during intense foggy/hazy days but the fog water showed alkaline nature, mainly due to the neutralizing capacity of NH4 aerosols. Trajectory analyses showed that air masses were predominantly from NW direction, which might be responsible for transport of BC from distant and surrounding local sources. Diurnal variation of BC on all days showed a morning and an evening peak that were related to domestic cooking and vehicular emissions, apart from boundary layer changes. OPAC (Optical properties of aerosols and clouds) model was used to compute the optical properties of aerosols. Both OPAC-derived and observed aerosol optical depth (AOD) values showed spectral variation with high loadings in the short wavelengths (<1 μm). AOD value at 0.5 μm wavelength was significantly high during intense foggy/hazy days (1.22) than during clear sky or less foggy/hazy days (0.63). OPAC-derived Single scattering albedo (SSA) was 0.84 during the observational period, indicating significant contribution of absorbing aerosols. However, the BC mass fraction to TSP increased by only 1% during intense foggy/hazy days and thereby did not show any impact on SSA during that period. A large increase was observed in the shortwave (SW) atmospheric (ATM) forcing during intense foggy/hazy days (+75.8 W/m2) than that during clear sky or less foggy/hazy days (+38 W/m2), mainly due to increase in absorbing aerosols. Whereas SW forcing at surface (SUF) increased from −40 W/m2 during clear sky or less foggy/hazy days to −76 W/m2 during intense foggy/hazy days, mainly due to the scattering aerosols like SO4 2-.  相似文献   
2.
Sulphate reduction is a key reaction to remove acidity from water bodies affected by acid mine drainage. In this study, 35SSO42− reduction rates determined in sediments from a variety of acidic lignite pit lakes have been compiled. The rates decreased with pH and are strongly dependent on carbon substrate. The rates were fitted to a Monod model adapted to the specific conditions of acidic pit lakes (APL) sediments: i) sulphate reduction rate is independent from sulphate concentration due to the high concentration typically observed in APL systems (10–30 mM), ii) the observed pH dependency of sulphate reduction was accounted for by an inhibition function Finihibt which considers the occurrence of low cell numbers of sulphate reducing bacteria at pH values < 4.75. Simulated steady-state sulphate reduction rates are predicting measured rates at carbon substrate concentrations of <10 μM. Estimated steady-state reaction time scales range between 2.4 h at pH 7 and 41 h at pH 3 at a carbon half-saturation constant of KC−S = 100 μM and are increasing with increasing KC−S values. Time scales at low pH are too long to allow for significant generation of alkalinity during the time of residence of groundwater passing through the top and hence most reactive zone of APL sediments which has important implications for the remediation of acidic pit lakes.  相似文献   
3.
4.
The present study is based mainly upon the authors' hydrochemical and hydrobiological studies of small silicate streams in South-West Germany, principally in the Black Forest and the Odenwald.

The aim of the paper is the adaptation of a practically proven four-level biological classification system of different degrees of acidity using benthic maroinvertebrates to a five-level system of acidification of mainly upland streams with low buffer capacity. The main reason for such a five-class system is the Water Framework Directive of the European Union (EU WFD), which lays down a five-level classification system for the assessment of the ecological quality of waters.

The biological method of assessing the state of acidity for evaluation of the degree of anthropogenic acidification under the directive, and principles of the EU WFD, are also described. A list of 278 taxa of the macrozoobenthos has been reclassified from a four-level system to a five-level biological indication system, based upon the authors' scientific expertise and the latest references from literature of different acid sensitive areas in Germany.  相似文献   

5.
对ICP-OES法测定镍、钴的适用条件进行探讨和改进。检出限分别为0.018μg/mL和0.0042μg/mL,相对标准偏差为0.62%~1.55%,结果令人满意。  相似文献   
6.
This study investigates the geochemical characteristics of the acid mine drainage discharged from the abandoned mine adits and tailing piles in the vicinity of the Lousal mine and evaluates the extent of pollution on water and on the stream sediments of the Corona stream. Atmospheric precipitation interacting with sulphide minerals in exposed tailings produces runoff water with pH values as low as 1.9–2.9 and high concentrations of (9,249–20,700 mg l−1), Fe (959–4,830 mg l−1) and Al (136–624 mg l−1). The acidic effluents and mixed stream water carry elevated Cu, Pb, Zn, Cd and As concentrations that exceed the water quality standards. However, the severity of contamination generally decreases 4 km downstream of the source due to mixing with fresh waters, which causes the dilution of dissolved toxic metals and neutralization of acidity. Some natural attenuation of the contaminants also occurs due to the general reduced solubility of most trace metals, which may be removed from solution, by either co-precipitation or adsorption to the iron and aluminium precipitates.  相似文献   
7.
A comprehensive study on the chemical compositions of wet precipitation was carried out from January 2004 to December 2004 in Jinhua, southeastern China's Zhejiang Province. All samples were analyzed for pH, electrical conductivity and major ions (F, Cl, NO3, SO42−, K+, Na+, Ca2+, Mg2+ and NH4+). The rainwater was typically acidic with a volume-weighted mean pH of 4.54, which ranged from 3.64 to 6.76. SO42− and NO3 were the main anions, while NH4+ and Ca2+ were the main cations. The concentrations of these major ions were generally higher compared to those reported in other parts of the world, but much lower than those in northern China.Wet deposition fluxes of major ions showed pronounced seasonal variations with maximum in spring and minimum in autumn. Significant correlations were found in soil-derived species among Ca2+, Mg2+ and K+ and sea-salt species between Na+ and Cl. Other relatively good correlations were also observed between Ca2+ and SO42-, Mg2+ and SO42-, Mg2+ and NO3, Mg2+ and Cl. Principal component analysis was also performed on individual precipitation to find possible sources of the major ionic species. Varimax rotated four components accounting for 85.9% of the total variance, and were interpreted as acid and alkaline pollutants, sea spray and mixed source, soil and acid/neutralization. Calculation of enrichment factors for rainwater components relative to soil and seawater indicated that Ca2+ and K+ mainly originated from the terrestrial source, and SO42- and NO3 were mostly attributed for the anthropogenic activities in the study area. In general, the results suggested that precipitation chemistry is strongly influenced by anthropogenic sources rather than natural and marine sources. The pollutants in rainwater were mainly derived from long distance transport, local industry and traffic sources.  相似文献   
8.
This study is concerned with the spatial variability of some wet atmospheric precipitation parameters such as; pH, conductivity (EC). The study also depicts the spatial variability of some ions (cations and anions) of atmospheric precipitation in Jordan such as, Ca2+, Mg2+, Na+ and K+, HCO3, Cl, NO3 and SO42−. The basis of the work is to establish a relationship through the cumulative semivariogram technique between the distance ratios and the spatial dependence structure of the chemical composition of atmospheric precipitation. All semivariogram models are constructed in this study in order to understand the behavior of the spatial distribution. The spatial distributions of rainwater parameters show differences from station to station which is expressed in terms of angle, where the larger the angle the weaker the correlation. The semivariogram (SV) models are constructed to show the variation of the rainfall chemistry in Jordan. The SV models show weak correlation between mountain and leeside mountain stations, i.e. mountain and desert stations. On the other hand, good correlations are observed when transferring from south to north of the country. The larger is the found angle, the weaker is the correlation. For most of the SV model the correlation is found to be very weak between desert and mountainous locality. The Standard Regional Dependence Factor (SRDF) is used for prediction of the distribution of rain fall parameters. It shows the relative error between observed and predicted values of rainwater parameters. The overall regional relative error between the observed and estimated concentrations remains less than 15%.  相似文献   
9.
方学芝 《云南地质》2007,26(4):472-479
中甸格咱岛弧带是三江成矿带的重要组成部份,也是我国近年来寻找斑岩铜矿取得重大突破的矿集区之一。文中对中酸性斑岩的时空分布、岩石组合分类、岩石矿物学、岩石地球化学及岩浆演化作了研究,对含矿与非含矿斑岩作了简单对比。对该区基础研究和斑岩铜矿的寻找具有探讨意义。  相似文献   
10.
Sustainable land management often requires redevelopment of existing and often contaminated Brownfield sites over use of Greenfield or agricultural land. Stabilisation / solidification (S/S) offer a viable remediation option with particular suitability in treating heavy metal contaminants. However, uncertainties over long-term durability and previously cheap landfill disposal costs resulted in limited use in many countries. There is a need to characterise treated material and assess components containment and release, to improve S/S confidence and inform remedial design, using the evaluation of the leaching controlling mechanisms. To improve understanding of key features that will enable improvements to such designs, this paper presents an evaluation of leaching for CEM II stabilised kaolin, using the leaching behaviour of 4 main components—aluminium, silicon, calcium and sulphur. Results show no detrimental implications on chemical durability due to kaolin degradation with hydration under induced alkalinity, with increased formation of stable cementitious minerals. Availabilities for components show that aluminium and silicon had minimal leachability compared to total content, whilst calcium and sulphur show almost total leaching availability. Decreasing calcium and silicon leachability under natural chemical conditions with increased hydration duration supports the increased formation of stable cementitious products with time, using the products of kaolin dissociation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号