首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   25篇
  国内免费   39篇
测绘学   2篇
大气科学   88篇
地球物理   58篇
地质学   9篇
海洋学   6篇
天文学   1篇
综合类   1篇
自然地理   32篇
  2023年   4篇
  2022年   4篇
  2021年   8篇
  2020年   16篇
  2019年   5篇
  2018年   6篇
  2017年   8篇
  2016年   11篇
  2015年   10篇
  2014年   16篇
  2013年   30篇
  2012年   14篇
  2011年   11篇
  2010年   7篇
  2009年   11篇
  2008年   5篇
  2007年   6篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有197条查询结果,搜索用时 203 毫秒
1.
与IPCC第五次评估报告(AR5)相比,在第六次评估报告(AR6)评估中,观测的极端天气气候事件变化证据,特别是归因于人为影响的证据加强。人类活动造成的气候变化已影响到全球每个区域的许多极端天气气候事件。随着未来全球变暖进一步加剧,预估极端热事件、强降水、农业生态干旱的强度和频次以及强台风(飓风)比例等将增加,越罕见的极端天气气候事件,其发生频率的增长百分比越大。这些结论再次凸显了应对气候变化和极端天气气候事件的必要性和紧迫性。  相似文献   
2.
利用1981—2016年7—10月中国753站逐日降水资料、气象信息综合分析处理系统(MICAPS)逐日站点降水资料、日本东京台风中心西北太平洋热带气旋(TC)最佳路径资料和NCEP/NCAR再分析资料集,分析了华南地区区域性日降水极端事件(RDPE事件)的统计特征及环流异常。根据华南地区RDPE事件的发生是否受热带气旋影响将其分为TCfree-RDPE和TCaff-RDPE两类事件,其中TCaff-RDPE事件占42%且集中发生在8月4—5候;TCfree-RDPE事件以7月发生频数最多,占其总频次的1/2以上。TCfree-RDPE事件发生时,华南地区受异常气旋性环流控制,来自西太平洋和中国南海的暖湿气流与北方冷气团在此汇合并形成一条狭长的水汽辐合带,低层辐合、高层辐散,显著强烈的上升运动为TCfree-RDPE事件的发生与维持提供了有利条件;与此同时,波扰动能量由高原东北侧及河西走廊地区向华南一带传播并在华南显著辐合,有利于华南上空扰动的发展和维持。TCaff-RDPE事件发生时,华南上空由低层到高层的斜压环流结构更为明显,异常上升运动更加强烈,热带气旋在其运动过程中携带了大量源自孟加拉湾、中国南海和西太平洋地区的水汽并输送至华南地区,水汽辐合气流更为强盛。同时,波扰动能量由高纬度地区沿河西走廊向下游传播,但在华南地区辐合不甚明显。两类极端事件发生时,加热场上的差异亦明显。华南及邻近地区上空的大气净加热及其南侧大范围区域的净冷却所形成的加热场梯度对TCfree-RDPE事件的发生有利。而TCaff-RDPE事件发生时,〈Q1〉和〈Q2〉在经向上由18°N以南、华南及其邻近地区、32°N以北呈负—正—负的异常分布型,正距平值更高,加热场梯度更大,有利于TCaff-RDPE事件的维持。这些结果有利于人们认识和预测华南区域性日降水极端事件的发生。   相似文献   
3.
Hydrologists use the generalized Pareto (GP) distribution in peaks-over-threshold (POT) modelling of extremes. A model with similar uses is the two-parameter kappa (KAP) distribution. KAP has had fewer hydrological applications than GP, but some studies have shown it to merit wider use. The problem of choosing between GP and KAP arises quite often in frequency analyses. This study, by comparing some discrimination methods between these two models, aims to show which method(s) is (are) recommended. Three specific methods are considered: one uses the Anderson-Darling goodness-of-fit (GoF) statistic, another uses the ratio of maximized likelihood (closely related to the Akaike information criterion and the Bayesian information criterion), and the third employs a normality transformation followed by application of the Shapiro-Wilk statistic. We show this last method to be the most recommendable, due to its advantages with sizes typically encountered in hydrology. We apply the simulation results to some flood POT datasets.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR E. Volpi  相似文献   
4.
An attempt is made to assess the future trend of spatio-temporal variation of precipitation over a medium-sized river basin. The Statistical Downscaling Model (SDSM, version 4.2) is used to downscale the outputs from two general circulation models (GCMs) for three future epochs: epoch-1 (2011–2040), epoch-2 (2041–2070) and epoch-3 (2071–2100). Considering the Upper Mahanadi Basin as a test bed, the study results indicate a “wetter” monsoon (June–September) and the annual increase in precipitation is 12% during epoch-3, which is consistent for both GCMs. Monthly analyses indicate that the precipitation totals are likely to increase and the magnitude of increase is greater during monsoon months than non-monsoon months. The number of month-wise daily extremes increases in most months in the year. However, the maximum percentage increase (with respect to baseline period, 1971–2000) in the number of extreme events is found in the non-monsoon months (specifically before and after the monsoon).  相似文献   
5.
Abstract

Sea-level allowances at 22 tide-gauge sites along the east coast of Canada are determined based on projections of regional sea-level rise for the Representative Concentration Pathway 8.5 (RCP8.5) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) and on the statistics of historical tides and storm surges (storm tides). The allowances, which may be used for coastal infrastructure planning, increase with time during the twenty-first century through a combination of mean sea-level rise and the increased uncertainty of future projections with time. The allowances show significant spatial variation, mainly a consequence of strong regionally varying relative sea-level change as a result of glacial isostatic adjustment (GIA). A methodology is described for replacement of the GIA component of the AR5 projection with global positioning system (GPS) measurements of vertical crustal motion; this significantly decreases allowances in regions where the uncertainty of the GIA models is large. For RCP8.5 with GPS data incorporated and for the 1995–2100 period, the sea-level allowances range from about 0.5?m along the north shore of the Gulf of St. Lawrence to more than 1?m along the coast of Nova Scotia and southern Newfoundland.  相似文献   
6.
Two approaches of statistical downscaling were applied to indices of temperature extremes based on percentiles of daily maximum and minimum temperature observations at Beijing station in summer during 1960-2008. One was to downscale daily maximum and minimum temperatures by using EOF analysis and stepwise linear regression at first, then to calculate the indices of extremes; the other was to directly downscale the percentile-based indices by using seasonal large-scale temperature and geo-potential height records. The cross-validation results showed that the latter approach has a better performance than the former. Then, the latter approach was applied to 48 meteorological stations in northern China. The cross-validation results for all 48 stations showed close correlation between the percentile-based indices and the seasonal large-scale variables. Finally, future scenarios of indices of temperature extremes in northern China were projected by applying the statistical downscaling to Hadley Centre Coupled Model Version 3 (HadCM3) simulations under the Representative Concentration Pathways 4.5 (RCP 4.5) scenario of the Fifth Coupled Model Inter-comparison Project (CMIP5). The results showed that the 90th percentile of daily maximum temperatures will increase by about 1.5℃, and the 10th of daily minimum temperatures will increase by about 2℃ during the period 2011-35 relative to 1980-99.  相似文献   
7.
陈尚锋  陈文  魏科 《大气科学进展》2013,30(6):1712-1724
Interannual variations in the number of winter extreme warm and cold days over eastern China (EC) and their relationship with the Arctic Oscillation (AO) and E1 Nifio-Southern Oscillation (ENSO) were investigated using an updated temperature dataset comprising 542 Chinese stations during the period 1961- 2011. Results showed that the number of winter extreme warm (cold) days across EC experienced a significant increase (decrease) around the mid-1980s, which could be attributed to interdecadal variation of the East Asian Winter Monsoon (EAWM). Probability distribution functions (PDFs) of winter temperature extremes in different phases of the AO and ENSO were estimated based on Generalized Extreme Value Distribution theory. Correlation analysis and the PDF technique consistently demonstrated that interannual variation of winter extreme cold days in the northern part of EC (NEC) is closely linked to the AO, while it is most strongly related to the ENSO in the southern part (SEC). However, the number of winter extreme warm days across EC has little correlation with both AO and ENSO. Furthermore, results indicated that, whether before or after the mid-1980s shift, a significant connection existed between winter extreme cold days in NEC and the AO. However, a significant connection between winter extreme cold days in SEC and the ENSO was only found after the mid-1980s shift. These results highlight the different roles of the AO and ENSO in influencing winter temperature extremes in different parts of EC and in different periods, thus providing important clues for improving short-term climate prediction for winter temperature extremes.  相似文献   
8.
Abstract

The well-established physical and mathematical principle of maximum entropy (ME), is used to explain the distributional and autocorrelation properties of hydrological processes, including the scaling behaviour both in state and in time. In this context, maximum entropy is interpreted as maximum uncertainty. The conditions used for the maximization of entropy are as simple as possible, i.e. that hydrological processes are non-negative with specified coefficients of variation (CV) and lag one autocorrelation. In this first part of the study, the marginal distributional properties of hydrological variables and the state scaling behaviour are investigated. Application of the ME principle under these very simple conditions results in the truncated normal distribution for small values of CV and in a nonexponential type (Pareto) distribution for high values of CV. In addition, the normal and the exponential distributions appear as limiting cases of these two distributions. Testing of these theoretical results with numerous hydrological data sets on several scales validates the applicability of the ME principle, thus emphasizing the dominance of uncertainty in hydrological processes. Both theoretical and empirical results show that the state scaling is only an approximation for the high return periods, which is merely valid when processes have high variation on small time scales. In other cases the normal distributional behaviour, which does not have state scaling properties, is a more appropriate approximation. Interestingly however, as discussed in the second part of the study, the normal distribution combined with positive autocorrelation of a process, results in time scaling behaviour due to the ME principle.  相似文献   
9.
The spatial and temporal patterns of the temperature extremes defined by 5th and 95th percentiles based on daily maximum/minimum temperature dataset were analyzed using Mann–Kendall test and linear regression method. The research results indicate that: (1) the seasonal minimum temperature is in stronger increasing trend than the seasonal maximum temperature; (2) in comparison with the changes of the maximum temperature, more stations display significantly increasing trends of minimum temperature in frequency and intensity; (3) comparatively, more stations have significantly decreasing trends in the intra-seasonal extreme temperature anomaly in summer and winter than in spring and autumn. The areal mean minimum temperature is in stronger increasing trend than areal mean maximum temperature; (4) the warming process in the Far-West (FW) China is characterized mainly by significantly increasing minimum temperature. The research will be helpful for local human mitigation to alterations in water resource and ecological environment in FW China due to changes of temperature extremes, as the ecologically fragile region of China.  相似文献   
10.
By comparing two sets of quality-controlled daily temperature observation data with and without the inhomogeneity test and adjustment from 654 stations in China during 1956-2004 and 1956-2010, impacts of inhomogeneity on changing trends of four percentile temperature extreme indices, including occurrences of cold days, cold nights, warm days, and warm nights with varying intensities, were discussed. It is found that the inhomogeneity affected the long-term trends averaged over extensive regions limitedly. In order to minimize the inhomogeneity impact, the 83 stations identified with obvious inhomogeneity impacts were removed, and an updated analysis of changing trends of the four temperature extreme indices with varying intensities during 1956-2010 was conducted. The results show that annual occurrences of both cold nights and cold days decreased greatly while those of warm nights and warm days increased significantly during the recent 20 years. The more extreme the event is, the greater the magnitude of changing trends for the temperature extreme index is. An obvious increasing trend was observed in annual occurrences of cold days and cold nights in the recent four years. The magnitude of changing trends of warm extreme indices was greater than that of cold extreme indices, and it was greater in northern China than in southern China. Trends for summer occurrence of cold days were not significant. Decreasing trends of occurrences of both cold nights and cold days were the greatest in December, January, and February (DJF) but the least in June, July, and August (JJA), while increasing trends of warm nights were the greatest in JJA. Cold nights significantly decreased from 1956 to 1990, and then the decreasing trend considerably weakened. The decreasing trend also showed an obvious slowdown in recent years for occurrence of cold days. However, increasing trends of warm nights and warm days both have been accelerated continuously since the recent decades. Further analysis presents that the evolution of the trends for occurrences of the four temperature extreme indices was dominated by the changes in northern China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号