首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   4篇
  国内免费   3篇
测绘学   1篇
大气科学   3篇
地球物理   24篇
地质学   14篇
海洋学   11篇
综合类   2篇
自然地理   12篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   7篇
  2011年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   9篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
排序方式: 共有67条查询结果,搜索用时 46 毫秒
1.
This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific, the oceanic region centered on the eastern Pacific warm pool, but also including the equatorial cold tongue and equatorial current system, and summarizes what is known about oceanographic influences on seabirds and cetaceans there. The eastern tropical Pacific supports on the order of 50 species of seabirds and 30 species of cetaceans as regular residents; these include four endemic species, the world’s largest populations for several others, three endemic sub-species, and a multi-species community that is relatively unique to this ecosystem. Three of the meso-scale physical features of the region are particularly significant to seabirds and cetaceans: the Costa Rica Dome for blue whales and short-beaked common dolphins, the Equatorial Front for planktivorous seabirds, and the countercurrent thermocline ridge for flocking seabirds that associate with mixed-species schools of spotted and spinner dolphins and yellowfin tuna. A few qualitative studies of meso- to macro-scale distribution patterns have indicated that some seabirds and cetaceans have species-specific preferences for surface currents. More common are associations with distinct water masses; these relationships have been quantified for a number of species using several different analytical methods. The mechanisms underlying tropical species–habitat relationships are not well understood, in contrast to a number of higher-latitude systems. This may be due to the fact that physical variables have been used as proxies for prey abundance and distribution in species–habitat research in the eastern tropical Pacific.Though seasonal and interannual patterns tend to be complex, species–habitat relationships appear to remain relatively stable over time, and distribution patterns co-vary with patterns of preferred habitat for a number of species. The interactions between seasonal and interannual variation in oceanographic conditions with seasonal patterns in the biology of seabirds and cetaceans may account for some of the complexity in species–habitat relationship patterns.Little work has been done to investigate effects of El Niño-Southern Oscillation cycles on cetaceans, and results of the few studies focusing on oceanic seabirds are complex and not easy to interpret. Although much has been made of the detrimental effects of El Niño events on apex predators, more research is needed to understand the magnitude, and even direction, of these effects on seabirds and cetaceans in space and time.  相似文献   
2.
Participatory fisheries management has been increasingly proposed as a useful management approach to address fisheries problems. However, the criteria regarding its applicability and measures of success still seem unclear. This study reviews the main concepts and theory behind two participatory resource-management approaches and compares them to the reality of fisheries management in Costa Rica. The analysis shows that while the implementation of a participatory approach in fisheries management should be encouraged, it is essential to keep in mind the possible limitations these approaches have. Furthermore, it seems important to improve institutional coordination and develop social, legal and economic policies that will allow the state, together with coastal communities, to contribute in an effective way to fisheries management.  相似文献   
3.
Stable isotope values of Costa Rican surface waters   总被引:3,自引:0,他引:3  
Stable isotope data of surface waters from the humid tropics in general, and Costa Rica in particular, are scarce. To improve our understanding of the spatial distribution of stable isotopes in surface waters, we measured δ18O and δD in river and lake (n=63) and precipitation (n=3) samples from Costa Rica. We also present data from the IAEA/WMO isotopes in precipitation network as context for our study. Surface water isotope values do not strongly correlate with elevation, stream head elevation, stream length, distance from Caribbean Sea, or estimated mean annual precipitation for the country as a whole. However, the data show distinct regional trends. The δ18O and δD values downwind of mountain ranges are inversely related to the altitude of the ranges the air masses traverse. In the lee of the high Talamanca Range, δ18O values are 6–8‰ lower, while in the lee of the lower Tilarán Range δ18O values are 2–3‰ lower than upwind sites along the Caribbean Slope. An altitude effect of −1.4‰ δ18O/km is present on the Pacific slope of southern Costa Rica, equivalent to a temperature effect of −0.3‰/°C. The Nicoya and Osa Peninsulas have higher values than upwind sites, suggesting input of Pacific-sourced moisture, evaporative enrichment, or decreased condensation temperatures. Elevated and increasing d-excess values inland along the Nicaragua Trough suggest a recycled component may be an important contributor to the water budget. These data provide preliminary stable isotope information for Costa Rica, and will benefit paleoclimatic research in the region. More detailed studies would be beneficial to our understanding of the controls on stable isotope composition of tropical waters.  相似文献   
4.
Assessing catchment runoff response remains a key research frontier because of limitations in current observational techniques to fully characterize water source areas and transit times in diverse geographical environments. Here, we report a study that combines empirical data with modelling to identify dominant runoff processes in a sparsely monitored humid tropical catchment. The analysis integrated isotope tracers into conceptual rainfall–runoff models of varying complexity (from 5 to 11 calibrated parameters) that are able to simulate discharge and tracer concentrations and track the evolving age of stream water exiting the catchment. The model structures can be seen as competing hypotheses of catchment functioning and were simultaneously calibrated against uncertain streamflow gaugings and a 2‐year daily isotope rainfall–runoff record. Comparison of the models was facilitated using global parameter sensitivity analysis and the resulting effect on calibration. We show that a variety of tested model structures reproduced water and tracer dynamics in stream, but the simpler models failed to adequately reproduce both. The resulting water age distributions of the tested models varied significantly with little similarity between the stream water age and stored water age distributions. The sensitivity analysis revealed that only some of the more complex models (from eight parameters) could be better constrained to infer more plausible water age distributions and catchment storage estimates. These models indicated that the age of water stored in the catchment is generally older compared with the age of water fluxes, with evapotranspiration age being younger compared with streamflow. However, the water age distributions followed a similar temporal behaviour dominated by climatic seasonality. Stream water ages increased during the dry season (greater than 1 year) and decreased with increased streamflow (a few weeks old) during the wet season. We further show that the ratios of the streamwater age to stored water age distribution and the water age distribution of actual evapotranspiration to the stored water age distribution from constrained models could potentially serve as useful hydrological indicators of catchment functioning. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
The last 2014‐16 El Niño event was among the three strongest episodes on record. El Niño considerably changes annual and seasonal precipitation across the tropics. Here, we present a unique stable isotope data set of daily precipitation collected in Costa Rica prior to, during, and after El Niño 2014‐16, in combination with Lagrangian moisture source and precipitation anomaly diagnostics. δ2H composition ranged from ‐129.4 to +18.1 (‰) while δ18O ranged from ‐17.3 to +1.0 (‰). No significant difference was observed among δ18O (P=0.186) and δ2H (P=0.664) mean annual compositions. However, mean annual d‐excess showed a significant decreasing trend (from +13.3 to +8.7 ‰) (P<0.001) with values ranging from +26.6 to ‐13.9 ‰ prior to and during the El Niño evolution. The latter decrease in d‐excess can be partly explained by an enhanced moisture flux convergence across the southeastern Caribbean Sea coupled with moisture transport from northern South America by means of an increased Caribbean Low Level Jet regime. During 2014‐15, precipitation deficit across the Pacific domain averaged 46% resulting in a very severe drought; while a 94% precipitation surplus was observed in the Caribbean domain. Understanding these regional moisture transport mechanisms during a strong El Niño event may contribute to a) better understanding of precipitation anomalies in the tropics and b) re‐evaluate past stable isotope interpretations of ENSO events in paleoclimatic archives within the Central America region.  相似文献   
6.
Understanding the relationship between multi-level institutional linkages and conditions influencing the likelihood of successful collective action has practical and theoretical relevance to sustainable local resource governance. This paper studies the relationship between multi-level linkages and local autonomy, a facilitating condition found to increase the likelihood of local successful collective action. A technique known as fuzzy-set qualitative comparative analysis (fsQCA) was applied to a longitudinal comparative data set. In the context of the decentralization of a protected area system in Costa Rica (1986–2006), it traced the emergence and endurance of autonomy among local institutions for biodiversity conservation. The technique illustrates which set of multi-level linkages combined in different ways, and at different points in time, to reach the same outcome (local autonomy). The findings show that a unique set of combinations of multi-level linkages led to the emergence of local autonomy among institutions for biodiversity conservation governance. In contrast, a more diverse set was associated with the endurance of local autonomy over time, suggesting that institutional diversity may play a more prominent role in the maintenance of institutional robustness than in processes of institutional emergence.  相似文献   
7.
The unique physical and biogeochemical characteristics of oxygen minimum zones (OMZs) influence plankton ecology, including zooplankton trophic webs. Using carbon and nitrogen stable isotopes, this study examined zooplankton trophic webs in the Eastern Tropical North Pacific (ETNP) OMZ. δ13C values were used to indicate zooplankton food sources, and δ15N values were used to indicate zooplankton trophic position and nitrogen cycle pathways. Vertically stratified MOCNESS net tows collected zooplankton from 0 to 1000 m at two stations along a north-south transect in the ETNP during 2007 and 2008, the Tehuantepec Bowl and the Costa Rica Dome. Zooplankton samples were separated into four size fractions for stable isotope analyses. Particulate organic matter (POM), assumed to represent a primary food source for zooplankton, was collected with McLane large volume in situ pumps.The isotopic composition and trophic ecology of the ETNP zooplankton community had distinct spatial and vertical patterns influenced by OMZ structure. The most pronounced vertical isotope gradients occurred near the upper and lower OMZ oxyclines. Material with lower δ13C values was apparently produced in the upper oxycline, possibly by chemoautotrophic microbes, and was subsequently consumed by zooplankton. Between-station differences in δ15N values suggested that different nitrogen cycle processes were dominant at the two locations, which influenced the isotopic characteristics of the zooplankton community. A strong depth gradient in zooplankton δ15N values in the lower oxycline suggested an increase in trophic cycling just below the core of the OMZ. Shallow POM (0–110 m) was likely the most important food source for mixed layer, upper oxycline, and OMZ core zooplankton, while deep POM was an important food source for most lower oxycline zooplankton (except for samples dominated by the seasonally migrating copepod Eucalanus inermis). There was no consistent isotopic progression among the four zooplankton size classes for these bulk mixed assemblage samples, implying overlapping trophic webs within the total size range considered.  相似文献   
8.
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
9.
Apatite phenocrysts from the 1963 and 1723 eruptions of Irazú volcano (Costa Rica) record a volatile evolution history that confirms previous melt inclusion studies, and provides additional information concerning the relative and absolute timing of subvolcanic magmatic events. Measurements of H, Cl, and F by secondary ion mass spectrometry reveal multiple populations of apatite in both 1723 and 1963 magmas. Assuming nominal apatite/melt partition coefficients allows us to compare the pattern of melt inclusions and apatites in ternary space, demonstrating the fidelity of the record preserved in apatite, and revealing a complex history of magma mixing with at least two components. The preservation of heterogeneous populations of apatite and of internally heterogeneous crystals requires short timescales (days to years) for these magmatic processes to occur.  相似文献   
10.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号