首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   9篇
  国内免费   6篇
地球物理   21篇
地质学   43篇
海洋学   4篇
自然地理   11篇
  2020年   2篇
  2019年   2篇
  2017年   6篇
  2016年   7篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2009年   6篇
  2008年   12篇
  2007年   2篇
  2006年   4篇
  2005年   6篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1997年   3篇
  1994年   2篇
  1992年   1篇
  1989年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
1.
Analysis of borehole flow logs is a valuable technique for identifying the presence of fractures in the subsurface and estimating properties such as fracture connectivity, transmissivity and storativity. However, such estimation requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. In this paper, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. In comparison with existing models, our approach presents major improvements in terms of computational expense and potential adaptation to a variety of fracture and experimental configurations. After derivation of the formulation, we demonstrate its application in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as for field-data analysis to investigate fracture connectivity and estimate fracture hydraulic properties. These applications provide important insights regarding (i) the strong sensitivity of fracture property estimates to the overall connectivity of the system; and (ii) the non-uniqueness of the corresponding inverse problem for realistic fracture configurations.  相似文献   
2.
We developed an inversion method to estimate the stress fields related to earthquake generation (seismogenic stress fields) from the centroid moment tensors (CMT) of seismic events by using Akaike's Bayesian information criterion (ABIC). On the idea that the occurrence of an earthquake releases some part of the seismogenic stress field around its hypocentre, we define the CMT of a seismic event by a weighted volume integral of the true but unknown seismogenic stress field. Representing each component of the seismogenic stress field by the superposition of a finite number of 3-D basis functions (tri-cubic B-splines), we obtain a set of linear observation equations to be solved for the expansion coefficients (model parameters). We introduce prior constraint on the roughness of the seismogenic stress field and combine it with observed data to construct a Bayesian model with hierarchic, highly flexible structure controlled by hyper-parameters. The optimum values of the hyper-parameters are objectively determined form observed data by using ABIC. Given the optimum values of the hyper-parameters, we can obtain the best estimates of model parameters by using a maximum likelihood algorithm. We tested the validity of the inversion method through numerical experiments on two synthetic CMT data sets, assuming the distribution of fault orientations to be aligned with the maximum shear stress plane in one case and to be random in the other case. Then we applied the inversion method to actual CMT data in northeast Japan, and obtained the pattern of the seismogenic stress field consistent with geophysical and geological observations.  相似文献   
3.
Note on rain-triggered earthquakes and their dependence on karst geology   总被引:2,自引:0,他引:2  
Recently reported rain-triggered seismicity from three separate storms occurred exclusively in karst geology. In this paper, I discuss how the hydrogeology of karst controls rain-triggered seismicity by channeling of the watershed after intense rainfall directly into the karst network. Such channeling results in very large increases in hydraulic head, and more importantly, substantially increases the vertical stress acting on the underlying pore-elastic media. Rapid loading upon a pore-elastic media induces seismicity by increasing pore pressure at depth in a manner similar to that observed from reservoir impounding. Using a simple 1-D model of a pore-elastic medium, it is shown that the instantaneous fluid pressure increase at depth is a substantial fraction of the pressure step applied at the boundary, followed by time-dependent pore pressure increases associated with the typical linear diffusion problem. These results have implications for the change in fluid pressure necessary to trigger earthquakes, and leads to the following hypothesis to be tested: Unambiguous rain-triggered seismicity will only occur in karst regions.  相似文献   
4.
This work integrates stress data from Global Positioning System measurements and earthquake focal mechanism solutions, with new borehole breakout and natural fracture system data to better understand the complex interactions between the major tectonic plates in northwestern South America and to examine how the stress regime in the Eastern Cordillera and the Llanos foothills in Colombia has evolved through time. The dataset was used to generate an integrated stress map of the northern Andes and to propose a model for stress evolution in the Eastern Cordillera. In the Cordillera, the primary present-day maximum principal stress direction is WNW–ESE to NW–SE, and is in the direction of maximum shortening in the mountain range. There is also a secondary maximum principal stress direction that is E–W to ENE–WSW, which is associated with the northeastward “escape” of the North Andean block, relative to stable South America. In the Cupiagua hydrocarbon field, located in the Llanos foothills, the dominant NNE–SSW fractures are produced by the Panama arc–North Andes collision and range-normal compression. However, less well developed asymmetrical fractures oriented E–W to WSW–ENE and NNW–SSE are also present, and may be related to pre-folding stresses in the foreland basin of the Central Cordillera or to present-day shear associated with the northeastward “escape” of the north Andean block. Our study results suggest that an important driver for orogenic deformation and changes in the stress field at obliquely convergent subduction zone boundaries is the arrival of thickened crust, such as island arcs and aseismic ridges, at the trench.  相似文献   
5.
Petrographic, petrophysical and fracture analyses were carried out on middle Cretaceous platform carbonates of the southern Apennines (Italy) that represent an outcrop analogue of the Val d’Agri and Tempa Rossa reservoirs of the Basilicata region. The studied outcrops, which are made of interlayered limestones and dolomites of inner platform environment, were selected to study the impact of dolomitization on reservoir properties and the control of dolomite texture on fracture development. Two types of dolomites – both formed during very early diagenesis – were found interlayered, at a metre scale, with micrite-rich limestones (mainly mudstones and wackestones). Dolomite A is fine-to medium crystalline and makes non-planar mosaics. Dolomite B is coarse-crystalline and makes planar-s and planar-e mosaics. The intercrystalline space of the planar-e subtype of dolomite B is either open or filled by un-replaced micrite or by late calcite or saddle dolomite cement. Dolomite A and dolomite B have similar average porosities of 3.7 and 3.1% respectively, which are significantly higher than the average porosity of limestones (1.4%). Their poro-perm relationships are similar, with the notable exception of planar-e type B dolomites, which generally display higher permeability values.The intensity of top bounded fractures is distinctly lower in coarse-crystalline dolomites than in fine-crystalline dolomites and limestones, both at the macro- and the micro-scale. On the other hand neither lithology (i.e. limestone vs. dolomite) nor dolomite crystal size control the intensity of perfect bed-bounded fractures, which is strictly controlled by the fracture layer thickness.Our results provide information that could be used as guidance for the characterization and modelling of fractured carbonate reservoirs made of interlayered limestones and dolomites.  相似文献   
6.
 Two-phase flow in fractured rock is an important phenomenon for a range of practical problems, not the least of which is non-aqueous phase liquid (NAPL) contamination of groundwater. Although multiphase systems have long been studied in the petroleum field, in the hydrogeological field progress has only just reaches the point where models are being developed. Scale effect is one of the main issues of concern. Although models presented in this paper have the potential to provide useful predictions, they can only be used to investigate a variety of possible scenarios with parameters being specified in the form of distribution of values. The calibration and validation of all but the simplest of these models poses a formidable task, with great demands on hydrogeologists and geophysicists to provide adequate data. Received: 20 May 1996 · Accepted: 19 August 1996  相似文献   
7.
A tectonics sedimentation evolution has been researched in Southeast Chongqing, and the reasonable Longmaxi shale highstand system tract (HST) and transgressive system tract (TST) geological model were built respectively based on the rock mechanical test and acoustic emission experiment which the samples are from field outcrop and the Yuye-1 well. The Longmaxi shale two-dimension tectonic stress field during the Cenozoic was simulated by the finite element method, and the distribution of fractures was predicted. The research results show that the tectonic stress field and the distribution of fractures were controlled by lithology and structure. As a result of Cretaceous movement, there are trough-like folds (wide spaced synclines), battlement-like folds (similar spaces between synclines and anticlines) and ejective folds (wide spaced anticlines), which are regularly distributed from southeast to northwest in the study area. Since the strain rate and other physical factors such as the viscosity are not taken into account, and the stress intensity is the main factor that determines the tectonic strength. Therefore, the stronger tectonic strength leads the higher stress intensity in the eastern and southeastern study area than in the northwest. The fracture zones are mainly concentrated in the fold axis, transition locations of faults and folds, the regions where are adjacent to faults. The fragile mineral contents (such as siliceous rock, carbonate rock and feldspar) in the shelf facies shale from south of the study area are higher than in the bathyal facies and abyssal facies shale from center of the study area. The shales characterized by low Poisson’s ratio and high elastic modulus from south of the study area are easily broken during Cenozoic orogenic movement.  相似文献   
8.
Thrust sheets accumulate internal strain before they start moving along discrete fault planes. However, there are no previous studies evaluating the time difference between initiation of strain and fault displacement. In this paper we use observations from the Eastern Cordillera of Colombia to evaluate this interval. We utilize multiple thermochronometers and paleothermometers to refine the timing of deformation. Based on these new data we build time-temperature path estimates that together with geometric outcrop-based structural analysis and fluid inclusions allow us to assign relative timing to features associated with strain, such as cleavage, veins and certain types of fractures, and compare that with the timing of thrusting. We find that cleavage was only formed close to maximum paleotemperatures, almost coeval with the onset of thrust-induced denudation by the Late Oligocene. The corresponding structural level of fold-related veins suggest that they were formed later but still when the country rocks were at temperatures higher than 160 °C, mostly during the Early Miocene and still coexisted with the latest stages of cleavage formation. Our data show that the main period of strain hardening was short (probably a few million years) and occurred before first-order basement thrusting was dominant, but was associated with second-order folding.  相似文献   
9.
Shallow groundwater in the northern Negev desert of Israel flows preferentially through a complex system of discontinuities. These discontinuities intersect what would otherwise be a massive, low-conductivity, high-porosity Eocene chalk. Vertical fractures and horizontal bedding planes were observed and mapped along approximately 1,200 m of scanline, 600 m of core and 30 two-dimensional trace planes. A bimodal distribution of size exists for the vertical fractures which occur as both single-layer fractures and multi-layer fractures. A bimodal distribution of log transmissivity was observed from slug tests conducted in packed-off, vertical intervals within the saturated zone. The different flow characteristics between the horizontal bedding planes and vertical-type fractures appear to be the cause of the bimodality. Two distinct conceptual models (discrete fracture network) were developed based on the fracture orientation, size, intensity and transmissivity statistics derived from field data. A correlation between fracture size and hydraulic aperture was established as the basis for calibrating the simulated model transmissivity to the field observations. This method of defining transmissivity statistically based on prior information is shown to be a reasonable and workable alternative to the usual conjecture approach towards defining transmissivity in a fractured-rock environment.  相似文献   
10.
Fractures: Finite-size scaling and multifractals   总被引:1,自引:0,他引:1  
The distributions of contact area and void space in single fractures in granite rock have been determined experimentally by making metal casts of the void spaces between the fracture surfaces under normal loads. The resulting metal casts on 52 cm diameter core samples show a complex geometry for the flow paths through the fracture. This geometry is analyzed using finite-size scaling. The spanning probabilities and percolation probabilities of the metal casts are calculted as functions of observation scale. Under the highest stresses of 33 MPa and 85 MPa there is a significant size-dependence of the geometric flow properties for observation scales smaller than 2 mm. Based on this data, the macroscopic percolation properties of the extended fracture can be well represented by relatively small core samples, even under normal stresses larger than 33 MPa. The metal casts also have rich multifractal structure that changes with changing stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号