首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   4篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The 1995 Kobe earthquake seriously damaged numerous buildings with pile foundations adjacent to quay walls. The seismic behavior of a pile group is affected by movement of quay walls, pile foundations, and liquefied backfill soil. For such cases, a three-dimensional (3-D) soil–water coupled dynamic analysis is a promising tool to predict overall behavior. We report predictions of large shake table test results to validate 3-D soil–water coupled dynamic analyses, and we discuss liquefaction-induced earth pressure on a pile group during the shaking in the direction perpendicular to ground flow. Numerical analyses predicted the peak displacement of footing and peak bending moment of the group pile. The earth pressure on the pile in the crustal layer is most important for the evaluation of the peak bending moment along the piles. In addition, the larger curvatures in the bending moment distribution along the piles at the water side in the liquefied ground were measured and predicted.  相似文献   
2.
This paper presents experimental results of a series of 1g shake table tests on mitigation measures for a model consisting of a 3×3 pile group and a sheet-pile quay wall in which the pile group was subjected to liquefaction-induced lateral spreading. First, general observations associated with the mechanism of lateral spreading and pile response are presented based on tests without remedial measures, followed by in depth discussions. Second, three remedial techniques were deployed to provide an adequate seismic performance of the pile group and the quay wall: (i) mitigating sheet pile of floating type, (ii) mitigating sheet pile of fixed end type, and (iii) anchoring the quay wall to a new pile row. The main objective of these mitigation methods was to restrict ground distortion behind the quay wall, enhancing seismic response of pile group and quay wall. This mitigation philosophy was decided based on the outcome of the first part, which consisted of a series of tests without mitigation measures. In addition, it should be noted that the proposed countermeasures were selected to be applicable for existing vulnerable pile groups, which are at risk of liquefaction and lateral spreading. Results of different mitigation tests are comparatively examined using a parameter called reduction factor, and the effectiveness of each countermeasure is discussed in detail. The results demonstrate that by applying the proposed mitigation measures the seismic performance of both pile group and quay wall can be improved, as a result of reduction in soil displacement and velocity of soil flow.  相似文献   
3.
This paper presents the results of a large-scale shake table test at E-Defense facility on a pile group located adjacent to a gravity-type quay wall and were subjected to liquefaction-induced large ground displacements. Extensive liquefaction-induced large ground lateral spreading displaced the quay wall about 2.2 m and damaged the pile foundation. The pile foundation consisted of a six-pile group which supported a footing and a superstructure model. Large lateral soil displacements were measured by several sensors such as inclinometers and the results favorably agreed with the directly observed deformations. Soil lateral displacement decreased as the distance from the quay wall increased landward. The piles were densely instrumented and the measured bending strain records were able to explain the damage to the piles. Lateral pressures of the liquefied soil exerted on the piles were measured using earth pressure (EP) sensors. The application of two design guidelines (JRA [1] and JSWA [2]) for estimation of liquefaction-induced lateral pressure on piles is discussed and their advantages and shortcomings are addressed. Furthermore, two simplified methods (Shamoto et al. [3] and Valsamis et al. [4]) are employed to predict the extent of liquefaction-induced large ground displacements and they are compared to the measured deformations. Finally, their accuracy for predicting the liquefaction-induced lateral displacements is evaluated and practical recommendations are made.  相似文献   
4.
桥梁桩基震害特点及其破坏机理   总被引:3,自引:0,他引:3  
20世纪60年代以来,国内外发生了多次强震,如日本神户地震、日本新泻地震、台湾集集地震、美国洛马普列塔地震等。在这些地震中大量的桥梁桩基遭到破坏,破坏形式复杂多样,如土体液化引起的桩基下沉、桩帽与承台的连接失效、桩基随土体侧移引起落梁等。本文总结概括了这些震害特点,详细讨论了非液化场地和液化场地上桥梁桩基的破坏模式,分析总结了桥梁桩基破坏机制。最后,结合桥梁工程结构特点,针对桥梁工程选址以及桩基抗震构造措施等方面简要提出了建设性建议。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号