首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   13篇
  国内免费   26篇
大气科学   18篇
地球物理   29篇
地质学   140篇
海洋学   7篇
天文学   5篇
综合类   18篇
自然地理   91篇
  2023年   1篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   13篇
  2018年   9篇
  2017年   9篇
  2016年   5篇
  2015年   5篇
  2014年   13篇
  2013年   17篇
  2012年   10篇
  2011年   15篇
  2010年   6篇
  2009年   15篇
  2008年   13篇
  2007年   24篇
  2006年   14篇
  2005年   8篇
  2004年   11篇
  2003年   15篇
  2002年   13篇
  2001年   13篇
  2000年   12篇
  1999年   8篇
  1998年   12篇
  1997年   6篇
  1996年   7篇
  1995年   10篇
  1994年   3篇
  1985年   1篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
1.
Sediment successions in coastal cliffs around Mezen Bay, southeastern White Sea, record an unusually detailed history of former glaciations, interstadial marine and fluvial events from the Weichselian. A regional glaciation model for the Weichselian is based on new data from the Mezen Bay area and previously published data from adjacent areas. Following the Mikulinian (Eemian) interglacial a shelf‐centred glaciation in the Kara Sea is reflected in proglacial conditions at 100–90 ka. A local ice‐cap over the Timan ridge existed between 75 and 65 ka. Renewed glaciation in the Kara Sea spread southwestwards around 60 ka only, interrupted by a marine inundation, before it advanced to its maximum position at about 55–50 ka. After a prolonged ice‐free period, the Scandinavian ice‐sheet invaded the area from the west and terminated east of Mezen Bay about 17 ka. The previously published evidence of a large ice‐dammed lake in the central Arkhangelsk region, Lake Komi, finds no support in this study. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents–Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80–100 ka, with a mean of 88±3 ka. This implies that that the Barents–Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei–Harmon–Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents–Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.  相似文献   
3.
The results of radiolarian analysis confirm the Campanian-Maastrichtian age of the Malokuril’skaya Formation in the Shikotan Island. The Campanian-Maastrichtian age of the formation is implied simultaneously by radiolarians and inoceramids. The studied Campanian and Campanian-Maastrichtian radiolarian assemblages include abundant specimens representing genus Prunobrachium, characteristic of which was bipolar distribution in cold-water to temperate basins. The new occurrence site of prunobrachids is established at the latitude of 43°N, the Far East of Russia.  相似文献   
4.
High resolution, single-channel seismic sparker profiles across the Akademichesky Ridge, an intra-basin structural high in Lake Baikal (Russia), reveal the presence of small sediment mounds and intervening moats in the upper part of the sedimentary cover. Such features interrupt the generally uniform and even acoustic facies and are not consistent with the hemipelagic sedimentation, which is expected on such an isolated high and which would produce a uniform sediment drape over bottom irregularities. The influence of turbidity currents is excluded since the ridge is an isolated high elevated more than 600-1000 m above adjacent basins. The mounded seismic facies, including migrating sediment waves and non-depositional/erosional incisions, strongly suggest that sediment accumulation was controlled by bottom-current activity. We interpret the mounds as small-scale (< few tens of km2 in area) lacustrine drifts. Four basic types of geometry are identified: 1) slope-plastered patch sheets; 2) patch drifts; 3) confined drifts; 4) fault-controlled drifts. The general asymmetry in the sedimentary cover of the ridge, showing thicker deposits on the NW flank, and the common location of patch drifts on the northeast side of small basement knolls indicate that deposition took preferentially place at the lee sides of obstacles in a current flowing northward or sub-parallel to the main contours. Deep-water circulation in the ridge area is not known in detail, but there are indications that relatively cold saline water masses are presently flowing out of the Central Basin and plunging into the deep parts of the North Basin across the ridge, a process that appears to be driven mainly by small differences in salinity. We infer that the process responsible for the observed bottom-current-controlled sedimentary features has to be sought in these large-scale water-mass movements and their past equivalents. The age of the onset of the bottom-current-controlled sedimentation, based on an average sedimentation rate of 4.0 cm/ky, is roughly estimated to be as least as old as 3.5 Ma, which is generally regarded as the age of the onset of the last major tectonic pulse of rift basin development in the Baikal region.  相似文献   
5.
俄国鱼类行为与感觉研究(Ⅰ)   总被引:6,自引:1,他引:6  
何大仁 《台湾海峡》1996,15(2):191-199
本文简述俄国鱼类行为及感觉系统研究的发展,概述了在洄游及基本行为类型研究结果,鱼在水流中行为,其水动力学特征及游泳速度、温度选择、与个体生理状态相关的鱼行为,以及鱼类行为遗传研究。  相似文献   
6.
Deep seismic sounding in the region of the Mirnyi kimberlite field indicates that the boundary velocity of the uppermost mantle is elevated (v b=8.6–8.8 km/sec) and extremely variable near the Mir kimberlite pipe. These velocity heterogeneities are probably associated with the kimberlite magmatism and may be useful in the identification of other kimberlite fields.  相似文献   
7.
Abstract. Lermontovskoe tungsten skarn deposit in central Sikhote-Alin is concluded to have formed at 132 Ma in the Early Cretaceous, based on K-Ar age data for muscovite concentrates from high-grade scheelite ore and greisenized granite. Late Paleozoic limestone in Jurassic - early Early Cretaceous accretionary complexes was replaced during hydrothermal activity related to the Lermontovskoe granodiorite stock of reduced type. The ores, characterized by Mo-poor scheelite and Fe3+- poor mineral assemblages, indicate that this deposit is a reduced-type tungsten skarn (Sato, 1980, 1982), in accordance with the reduced nature of the granodiorite stock.
The Lermontovskoe deposit, the oldest mineralization so far known in the Sikhote-Alin orogen, formed in the initial stage of Early Cretaceous felsic magmatism. The magmatism began shortly after the accretionary tectonics ceased, suggesting an abrupt change of subduction system. Style of the Early Cretaceous magmatism and mineralization is significantly different between central Sikhote-Alin and Northeast Japan; reduced-type and oxidized-type, respectively. The different styles may reflect different tectonic environments; compressional and extensional, respectively. These two areas, which were closer together before the opening of the Japan Sea in the Miocene, may have been juxtaposed under a transpressional tectonic regime after the magmatism.  相似文献   
8.
The transition from the Soviet to the post-Soviet period in and near Moscow manifested itself in increasing production of segregated space both in the urban core and suburban areas outside of the beltway to accommodate the preferences of the new Russian business and governmental elite. This paper focuses on the residential single-family housing inside old and new settlements, which are frequently gated. Approximately 260 of such suburban communities have been developed within 30 km of the beltway during the past few years, of which a majority have some form of exclusion mechanism in place, typically tall solid fences, gates, closed-circuit video surveillance and guarded entry checkpoints. The difference in exclusivity varies from the most exclusive older communities inside Moscow Serebryany Bor enclave and Rublevskoe highway mansions to less exclusive new developments along Novorizkhskoe and Dmitrovskoe highways. Despite high rates of construction, based on sociological surveys in 2003, only about 11% of Russia’s upper class claimed to live in such new “cottages,” with the rest owning condos and luxury apartments in the inner city or older detached homes in villages and small towns. Therefore, not all the needs have been accommodated and more development is certain to take place. The environmental impact of such developments is profound. Based on preliminary LANDSAT image analysis, almost 22% of suburban “green belt” forested land within 30 km zone has been converted to new construction from 1991 to 2001. New construction is now focusing on the remaining fragments of natural vegetation, which will likely lower air quality and water quality available for the city. Ironically, the new developments advertise themselves as “clean and green” with massive investments in unnatural landscaping (seeded lawns, exotic shrubs, river and lake shore “improvements”). This investment highlights the well-known paradox of development in which people move out of town to live near nature, while destroying the wild nature they come to enjoy. “We left city for the weekend It was raining, saw no stars There were fences everywhere Our chiefs behind the bars.” Gennady Shpalikov  相似文献   
9.
The Cenozoic intracontinental Teletsk basin in the Central Asian Altai Mountains is composed of a complexly structured northern and a more simple southern sub-basin. These sub-basins formed in two distinct kinematic stages when first the NNW-striking Teletsk- and then the NE-striking West-Sayan shear zones became reactivated in the Cenozoic under dominant NS-oriented horizontal compression. Although the entire Teletsk basin strikes roughly NS, the southern sub-basin is parallel to the NNW-trending, amphibolite facies Teletsk ductile shear zone, while the northern sub-basin is NS-striking and flanked by differently structured, greenschist facies basement. Basement reactivation closely controlled the southern sub-basin formation, but this is less clear for the northern sub-basin. Contrasts between northern and southern basement and the exclusive occurrence of pseudotachylytes along the margins of the southern basin are explored for their contribution to the formation of the Teletsk basin with two distinct sub-basins.In the ductile shear fabric of the basement flanking the southern sub-basin, concordantly interleaved pseudotachylytes and isolated breccia lenses reflect local brittle deformation along the ductile fabric. The genetic link between breccia lenses and pseudotachylyte occurrences was defined by microstructural investigation. It allows to explore their possible development in a dextral strike–slip zone. These rocks occur in a large fault-bounded segment of the basement. The geometry of the structures in the segment is comparable with a dextral strike–slip sidewall-ripout structure along the Teletsk shear zone. Seismic slip related to pseudotachylytes is attributed to the sudden stress release on the NNW-striking Teletsk shear zone, when the latter became unconstrained by reactivation of the NE-trending West-Sayan fault zone at its northern boundary. The boundary of the sidewall-ripout structure was reactivated as a large listric fault in a later stage. The northern sub-basins roughly develop along an NS strike and are assumed to reflect reactivation of the ductile shear zone underneath the variably structured greenschist facies basement outcropping along the flanks of the sub-basin.  相似文献   
10.
The post-glacial history of Lake Pieni-Kuuppalanlampi, western Lake Ladoga region, was studied by means of stratigraphic pollen and diatom analyses. Diatoms were analysed to track the isolation history of the basin and the limnological effects of the early land-use phases indicated by pollen analysis. Chrysophycean stomatocysts and Isoëtes spores were also employed in the limnological reconstructions. Sediment dating was provided by six conventional radiocarbon dates.The lower part of the 370-cm long sediment sequence represents early Holocene, large lake conditions: the (freshwater) Yoldia and Ancylus stages of the Baltic basin, with a short-term lagoonal or isolation phase at the end of Yoldia. The basin was isolated due to Ancylus lake regression at 9785 cal B.P. For the small-lake sequence (0–250 cm) we used diatom inferences (WA-method) for hindcasting water chemistry. The post-isolation limnology of Pieni-Kuuppalanlampi reflects the development of vegetation on its small hill-top catchment. In its early development, the lake was mesotrophic, but became more acidic (pH about 6) and oligotrophic after the decline of temperate hardwood trees and the spread of spruce to the area after around 5000 B.P. The lake ecosystem appears to have reacted sensitively to agricultural land-use in the catchment from AD 400–800 onwards: inferred total phosphorus levels and pH both rise during these periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号