首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   17篇
  国内免费   31篇
测绘学   1篇
大气科学   2篇
地球物理   30篇
地质学   74篇
海洋学   3篇
天文学   3篇
综合类   1篇
自然地理   3篇
  2020年   7篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   5篇
  2012年   6篇
  2011年   9篇
  2010年   9篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   8篇
  2005年   9篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1989年   2篇
  1988年   2篇
排序方式: 共有117条查询结果,搜索用时 31 毫秒
1.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
徐清明  穆旭 《海岸工程》1997,16(3):47-54
本文介绍的基岩水下爆破属临近重要建筑物的水下控制爆破。当岩石裂隙发育,且岩面有较厚的石碴覆盖层,其技术难度大,采取的诸如搭钢平台钻孔。塑料套管护孔,以及孔间、排间塑料导爆管雷管接力式微差起爆网路等措施,都是成功之经验,值得今后类似工程推广应用。  相似文献   
3.
4.
This paper presents the results of ground vibration measurements carried out in Hisarcik Boron open pit mine located on the west side of central Anatolia near Kütahya province in Turkey. Within the scope of this study to predict peak particle velocity (PPV) level for this site, ground vibration components were measured for 304 shots during bench blasting. In blasting operations, ANFO (blasting agent), gelatin dynamite (priming), and delay electric detonators (firing) were used as explosives. Parameters of scaled distance (charge quantity per delay and the distance between the source and the station) were recorded carefully and the ground vibration components were measured for all blast events using two different types of vibration monitors (one White Mini-Seis and one Instantel Minimate Plus Model). The absolute distances between shot points and monitor stations were determined using GPS. The equation of square root scaled distance extensively used in the literature was taken into consideration for the prediction of PPV. Then, the data pairs of scaled distance and particle velocity obtained from the 565 event records were analyzed statistically. At the end of statistical evaluation of the data pairs, an empirical relation which gives 50% prediction line with a reasonable correlation coefficient was established between PPV and scaled distance.  相似文献   
5.
为满足我国山地丘陵地区物探爆破孔施工技术的要求,研究适合土层、岩层钻进用的钻机及工具,对钻机的配套设备进行了开发研究。分析了国内山地丘陵地区物探爆破孔施工技术现状,并着重介绍了研制设计内容及生产试验情况。  相似文献   
6.
在分析水下爆破规律性的基础上,确认了在马迹山港挤淤爆破中地震波对城门头景点的稳定性起主要的影响,并对其传播机理及影响机制进行了分析.对岩体裂隙进行的网络模拟结果揭示了爆破点与城门头景点之间岩体裂隙发育的宏观特征,对爆破震动的影响进行了分析,计算了爆破在景点处所引起的波速,得出挤淤爆破不会对城门头景点构成破坏性影响的结论.  相似文献   
7.
This paper investigates the various mechanisms and parameters that are responsible for delivering impulse to a vehicle that is unfortunate enough to detonate a buried mine. Small scale tests are used to examine the effects of air blast or ejected sand in imparting impulse to a plate that is located above the surface of the saturated soil that contains the explosive. Parameters such as confinement, stand off distance, depth of burial of the explosive, density of the soil, and saturation level of the soil are also examined.  相似文献   
8.
This paper describes a soil‐structure coupling method to simulate blast loading in soil and structure response. For the last decade, simulation of soil behavior under blast loading and its interaction with semi buried structure in soil becomes the focus of computational engineering in civil and mechanical engineering communities. In current design practice, soil‐structure interaction analysis often assumes linear elastic properties of the soil and uses small displacement theory. However, there are numerous problems, which require a more advanced approach that account for soil‐structure interaction and appropriate constitutive models for soil. In simplified approaches, the effect of soil on structure is considered using spring‐dashpot‐mass system, and the blast loading is modeled using linearly decaying pressure–time history based on equivalent trinitrotoluene and standoff distance, using ConWep, a computer program based on semi‐empirical equations. This strategy is very efficient from a CPU time computing point of view but may not provide accurate results for the dynamic response of the structure, because of its significant limitations, mainly when soil behavior is strongly nonlinear and when the buried charge is close to the structure. In this paper, both soil and explosive are modeled using solid elements with a constitutive material law for soil, and a Jones–Wilkins–Lee equation of state for explosive. One of the problems we have encountered when solving fluid structure interaction problems is the high mesh distortion at the contact interface because of high fluid nodal displacements and velocities. Similar problems have been encountered in soil structure interaction problems. To prevent high mesh distortion for soil, a new coupling algorithm is performed at the soil structure interface for structure loading. The coupling method is commonly used for fluid structure interaction problems in automotive and aerospace industry for fuel sloshing tank, and bird impact problems, but rarely used for soil structure interaction problems, where Lagrangian contact type algorithms are still dominant. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
9.
Tunnel blasting techniques in difficult ground conditions   总被引:1,自引:0,他引:1  
Summary The quality of tunnelling can be improved by proper blast design which takes into account the rock mass conditions. The effects of different rock mass properties on tunnel blast performance need to be assessed. The strength of the formation and joint orientation critically affected fragmentation and overbreak in a model study of blasting. Similar effects were noted in situ when the performance of a blast pattern in different rock mass conditions in the Tandsi inclines (Bihar, India) were analysed. Accordingly, the on-going blast pattern was modified for the poor ground conditions prevailing in the rest of the inclines. Improved fragmentation and smooth profile were obtained as a result; the rate of drivage improved considerably and the cost of excavation was reduced. Based on the observations in the model studies and the investigations at Tandsi, some guidelines for optimum blast design in difficult ground conditions are suggested.  相似文献   
10.
选取2019年3月—8月河南平顶山市宝丰县平煤矿区发生的ML 2.0—2.9天然地震、爆破、塌陷等9次震动事件,在区域地质构造背景和波形特征分析基础上,采用短时傅里叶变换(STFT)方法开展时频波谱分析,提取不同类型事件的时频特征。结果显示:(1)天然地震频率成分丰富,且高、低频分布均匀,P波在约3 Hz和8 Hz处存在2个峰值,S波存在多个峰值;(2)爆破事件的时频谱相对集中,以低频为主,P波频率峰值约5Hz,信号主频随时间变化,大致呈线性降低至1—2 Hz;(3)塌陷事件频率成分以4 Hz以下的低频为主,P波无明显峰值且频率成分单一,主频出现在2 Hz左右的面波。本文结果可为今后该矿区震动事件类型判断提供参考依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号