首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   4篇
地球物理   8篇
自然地理   1篇
  2020年   1篇
  2017年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Epigenetic gorges form when channels that have been laterally displaced during episodes of river blockage or aggradation incise down into bedrock spurs or side‐walls of the former valley rather than excavating unconsolidated fills and reinhabiting the buried paleovalley. Valley‐filling events that promote epigenetic gorges can be localized, such as a landslide dam or an alluvial/debris flow fan deposit at a tributary junction, or widespread, such as fluvial aggradation in response to climate change or fluctuating base‐level. The formation of epigenetic gorges depends upon the competition between the resistance to transport, strength and roughness of valley‐filling sediments and a river's ability to sculpt and incise bedrock. The former affects the location and lateral mobility of a channel incising into valley‐filling deposits; the latter determines rates of bedrock incision should the path of the incising channel intersect with bedrock that is not the paleovalley bottom. Epigenetic gorge incision, by definition, post‐dates the incision that originally cut the valley. Strath terraces and sculpted bedrock walls that form in relation to epigenetic gorges should not be used to directly infer river incision induced by tectonic activity or climate variability. Rather, they are indicative of the variability of short‐term bedrock river incision and autogenic dynamics of actively incising fluvial landscapes. The rate of bedrock incision associated with an epigenetic gorge can be very high (>1 cm/yr), typically orders of magnitude higher than both short‐ and long‐term landscape denudation rates. In the context of bedrock river incision and landscape evolution, epigenetic gorges force rivers to incise more bedrock, slowing long‐term incision and delaying the adjustment of rivers to regional tectonic and climatic forcing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
2.
宽谷及宽谷阶地的形成与流域内的构造抬升活动密切相关。文中在考察阿尔金北缘断裂东段雁丹图与长草沟宽谷的基础上 ,结合古气候资料 ,探讨了晚更新世晚期以来两地河流阶地所反映的构造抬升。雁丹图自约 16 1kaBP以来发育了 3级堆积阶地 (T1,T2 与T3) ,并出露埋藏主要宽谷。 3级阶地面年龄分别约为 16 1ka ,12 8ka ,6 2ka ,反映了 3次构造抬升的存在 ,代表了 3次构造抬升发生的时间。雁丹图自约 16 1kaBP以来的构造抬升速率约为 4 8~ 4 5mm/a ;12 8~ 6 2kaBP间的抬升速率约 6 4mm/a ;6 2kaBP以来为 3 1mm/a。长草沟在 7kaBP以来有 4级阶地发育 (T3,T2 ,T′1与T1) ,均为堆积阶地 ,并出露埋藏宽谷。其中T3与T2 出露埋藏主要宽谷 ,T′1与T1出露埋藏次要宽谷。T3,T2与T′13级阶地的阶地面年龄分别约为 7ka ,3ka,2 5ka。 4级阶地反映 2次构造抬升 ,一次在约 7kaBP ,一次在 3kaBP左右。自 7 0kaBP以来长草沟的抬升速率约为 5 9mm/a ,在 7~ 3  相似文献   
3.
河流阶地演化与走滑断裂滑动速率   总被引:24,自引:9,他引:15  
断裂滑动速率是活动构造定量研究的最重要参数之一,不仅可以直接应用于活动构造的地震危险性预测和工程场地的地震安全性评价,还为地球动力学研究提供不可缺少的重要信息。原理上,断裂滑动速率可以用总位移量除以其累积时间而获得,但准确地确定断裂滑动速率并不是一件容易的事情,不同方法和研究者测定的同一条断裂的滑动速率可以相差3倍。文中通过对河流基座阶地演化及其对走滑断裂错动响应过程的分析发现,当一条山前河流切入河漫滩使其废弃形成阶地后,断裂的走滑位移使得河流两侧的阶地陡坎都遭到错动,其中一侧的下游阶地陡坎被错入河道而遭到河流的侵蚀,另一侧的下游阶地陡坎被错离河道,受到河流上游右侧地貌的保护而免遭侵蚀。因此,被错离河道一侧的阶地陡坎的位移在上阶地形成时就开始积累,阶地面的暴露年龄相当于位移累积的起始年代。另外,被错离河道一侧的阶地陡坎在下阶地停止侧蚀(可能同时开始接受沉积)时就开始累积位移,下阶地的初始沉积年代也代表阶地陡坎位移开始累积的时间。当然,如果能够获得被位移阶地陡坎的上下阶地年龄,就更能够把滑动速率限定在可靠的范围之内。在上述分析的基础上,提出3种利用河流阶地确定走滑断裂滑动速率的方法:第一是利用上下阶地年龄限定  相似文献   
4.
How rock resistance or erodibility affects fluvial landforms and processes is an outstanding question in geomorphology that has recently garnered attention owing to the recognition that the erosion rates of bedrock channels largely set the pace of landscape evolution. In this work, we evaluate valley width, terrace distribution, and bedload provenance in terms of reach scale variation in lithology in the study reach and discuss the implications for landscape evolution in a catchment with relatively flat‐lying stratigraphy and very little uplift. A reach of the Buffalo National River in Arkansas was partitioned into lithologic reaches and the mechanical and chemical resistance of the main lithologies making up the catchment was measured. Valley width and the spatial distribution of terraces were compared among the different lithologic reaches. The surface grain size and provenance of coarse (2–90 mm) sediment of both modern gravel bars and older terrace deposits that make up the former bedload were measured and defined. The results demonstrate a strong impact of lithology upon valley width, terrace distribution, and bedload provenance and therefore, upon landscape evolution processes. Channel down‐cutting through different lithologies creates variable patterns of resistance across catchments and continents. Particularly in post‐tectonic and non‐tectonic landscapes, the variation in resistance that arises from the exhumation of different rocks in channel longitudinal profiles can impact local base levels, initiating responses that can be propagated through channel networks. The rate at which that response is transmitted through channels is potentially amplified and/or mitigated by differences between the resistance of channel beds and bedload sediment loads. In the study reach, variation in lithologic resistance influences the prevalence of lateral and vertical processes, thus producing a spatial pattern of terraces that reflects rock type rather than climate, regional base level change, or hydrologic variability. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
5.
西南天山明尧勒背斜的第四纪滑脱褶皱作用   总被引:3,自引:1,他引:3       下载免费PDF全文
通过对明尧勒活动背斜喀浪勾律克河剖面生长前地层和翼部生长地层几何结构的填图以及变形河流阶地的系统测量,结合磁性地层及释光年代学研究,认为该背斜的滑脱褶皱作用起始于距今约1·6Ma,其总体几何结构形成于褶皱作用的早期,但其生长扩展并不完全遵从自相似性特征。持续的缩短作用部分被褶皱翼部陡倾膝折带的加长所吸收(由此导致背斜波幅的增加),另一部分可能是通过不同时期褶皱翼部不同膝折带组的旋转和迁移来实现的。明尧勒背斜的持续构造抬升是背斜区河流下切形成多级基座阶地的主因。晚第四纪褶皱的生长以背斜的垂直抬升为主,主要集中在北翼近核部,背斜宽度变化不大。背斜不同时期的抬升量和抬升速率均大于其缩短量和缩短速率,表明明尧勒背斜的变形以翼旋转为主(Pobletet al.,1996)。背斜自形成以来缩短速率和抬升速率均有减小的趋势  相似文献   
6.
The relative chronology of landscape evolution across the unglaciated Appalachian plateaus of Kentucky and Tennessee is well documented. For more than a century, geomorphologists have carefully mapped and correlated upland erosional surfaces inset by wide‐valley straths and smaller terraces. Constraining the timing of river incision into the Appalachian uplands was difficult in the past due to unsuitable dating methods and poorly preserved surface materials. Today, burial dating using the differential decay of cosmogenic 26Al and 10Be in clastic cave sediments reveals more than five million years of landscape evolution preserved underground. Multilevel caves linked hydrologically to the incision history of the Cumberland River contain in situ sediments equivalent to fluvial deposits found scattered across the Eastern Highland Rim erosional surface. Cave sediments correlate with: (1) thick Lafayette‐type gravels on the Eastern Highland Rim deposited between c. 5·7 and c. 3·5 Ma; (2) initial incision of the Cumberland River into the Eastern Highland Rim after c. 3·5 Ma; (3) formation of the Parker strath between c. 3·5 Ma and c. 2·0 Ma; (4) incision into the Parker strath at c. 2 Ma; (5) formation of a major terrace between c. 2·0 Ma and c. 1·5 Ma; (6) shorter cycles of accelerated incision and base level stability beginning at c. 1·5 Ma; and (7) regional aggradation at c. 0·85 Ma. Initial incision into the Appalachian uplands is interpreted as a response to eustasy at 3·2–3·1 Ma. Incision of the Parker strath is interpreted as a response to eustasy at 2·5–2·4 Ma. A third incision event at c. 1·5 Ma corresponds with glacial reorganization of the Ohio River basin. Widespread aggradation of cave passages at c. 0·85 Ma is interpreted as the beginning of intense glacial–interglacial cycling associated with global climate change. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
7.
通过对阿尔金断裂带西段莫勒切河河口附近卫星影像解译、野外调查测量及地貌面样品年龄测定,利用宽谷阶地、堆积阶地获取构造隆升速率、构造变形方式及加积速率,并结合区域气候资料探讨该区阶地发育对气候变化的响应.莫勒切河出山口发育4级阶地(T<‘4>,T<‘3>,T<‘2>,T<‘1>),其中T<‘4>、T<‘3>为宽谷阶地,T...  相似文献   
8.
Low-temperature apatite (U–Th)/He (AHe) thermochronology on vertical transects of leucogranite stocks and 10Be terrestrial cosmogenic nuclide (TCN) surface exposure dating on strath terraces in the Lahul Himalaya provide a first approximation of long-term (104–106 years) exhumation rates for the High Himalayan Crystalline Series (HHCS) for northern India. The AHe ages show that exhumation of the HHCS in Lahul from shallow crustal levels to the surface was ~ 1–2 mm/a and occurred during the past ~ 2.5 Ma. Bedrock exhumation in Lahul fits into a regional pattern in the HHCS of low-temperature thermochronometers yielding Plio-Pleistocene ages. Surface exposure ages of strath terraces along the Chandra River range from ~ 3.5 to 0.2 ka. Two sites along the Chandra River show a correlation between TCN age and height above the river level yielding maximum incision rates of 12 and 5.5 mm/a. Comparison of our AHe and surface exposure ages from Lahul with thermochronometry data from the fastest uplifting region at the western end of the Himalaya, the Nanga Parbat syntaxis, illustrates that there are contrasting regions in the High Himalaya where longer term (105–107 years) erosion and exhumation of bedrock substantially differ even though Holocene rates of fluvial incision are comparable. These data imply that the orogen's indenting corners are regions where focused denudation has been stable since the mid-Pliocene. However, away from these localized areas where there is a potent coupling of tectonic and surface processes that produce rapid uplift and denudation, Plio-Pleistocene erosion and exhumation can be characterized by disequilibrium, where longer term rates are relatively slower and shorter term fluvial erosion is highly variable over time and distance. The surface exposure age data reflect differential incision along the length of the Chandra River over millennial time frames, illustrate the variances that are possible in Himalayan river incision, and highlight the complexity of Himalayan environments.  相似文献   
9.
Fluvial terraces are used as geomorphic indicators for deciphering long-term landscape evolution. Knowing the distribution of fluvial terraces is essential for establishing former river profiles and their tectonic significance, for studying climate-modulated processes of terrace development, or for defining fluvial network adjustments in response to sudden base-level changes like those produced by fluvial captures. Multiple methods for automatic map production have been proposed based on the comparison of morphometric indices with those of the modern river course. Here we propose an alternative method to identify flat surfaces and scarps separating them from digital elevation models without setting comparisons with a modern river course and thus fully applicable to study flat landforms whatever their origin. Its application to the low-relief landscape of the Cenozoic Duero basin has allowed the improvement of previous geomorphological maps and the analysis of fluvial network adjustments in response to a sudden base-level fall after the opening of the Neogene endorheic basin towards the Atlantic Ocean. Reconstructed terrace long-profiles suggest an initial episode of fast vertical incision followed by a period of repeated planation–aggradation–incision with the formation of 14 to 13 unpaired terrace levels. Changes observed in the pattern of terrace profiles are discussed with regard to changes in regional tectonics and base-level variations. © 2019 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号