首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  国内免费   3篇
地质学   19篇
自然地理   1篇
  2019年   1篇
  2017年   2篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1996年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
The Proterozoic (950 Ma) Lyngdal granodiorite of southern Norwaybelongs to a series of hornblende–biotite metaluminousferroan granitoids (HBG suite) coeval with the post-collisionalRogaland Anorthosite–Mangerite–Charnockite (AMC)suite. This granitoid massif shares many geochemical characteristicswith rapakivi granitoids, yet granodiorites dominate over granites.To constrain both crystallization (P, T, fO2, H2O in melt) andmagma generation conditions, we performed crystallization experimentson two samples of the Lyngdal granodiorite (with 60 and 65 wt% SiO2) at 4–2 kbar, mainly at fO2 of NNO (nickel–nickeloxide) to NNO + 1, and under fluid-saturated conditions withvarious H2O–CO2 ratios for each temperature. Comparisonbetween experimental phase equilibria and the mineral assemblagein the Lyngdal granodiorite indicates that it crystallized between4 and 2 kbar, from a magma with 5–6 wt % H2O at an fO2of NNO to NNO + 1. These oxidized and wet conditions sharplycontrast with the dry and reduced conditions inferred for thepetrogenesis of the AMC suite and many other rapakivi granitesworldwide. The high liquidus temperature and H2O content ofthe Lyngdal granodiorite imply that it is not a primary magmaproduced by the partial melting of the crust but is derivedby the fractionation of a mafic magma. Lyngdal-type magmas appearto have volcanic equivalents in the geological record. In particular,our results show that oxidized high-silica rhyolites, such asthe Bishop Tuff, could be derived via fractionation of oxidizedintermediate magmas and do not necessarily represent primarycrustal melts. This study underlines the great variability ofcrystallization conditions (from anhydrous to hydrous and reducedto oxidized) and petrogenetic processes among the metaluminousferroan magmas of intermediate compositions (granodiorites,quartz mangerites, quartz latites), suggesting that there isnot a single model to explain these rocks. KEY WORDS: ferroan granitoids; crystallization conditions; experiments; Norway; Sveconorwegian; Bishop Tuff  相似文献   
2.
Conditions of the prograde, peak‐pressure and part of the decompressional P–T path of two Precambrian eclogites in the eastern Sveconorwegian orogen have been determined using the pseudosection approach. Cores of garnet from a Fe–Ti‐rich eclogite record a first prograde and syn‐deformational stage along a Barrovian gradient from ~670 °C and 7 kbar to 710 °C and 8.5 kbar. Garnet rims grew during further burial to 16.5–19 kbar at ~850–900 °C, along a steep dP/dT gradient. The pseudosection model of a kyanite‐bearing eclogite sample of more magnesian bulk composition confirms the peak conditions. Matrix reequilibration associated with subsequent near‐isothermal decompression and partial exhumation produced plagioclase‐bearing symplectites replacing kyanite and clinopyroxene at an estimated 850–870 °C and 10–11 kbar. The validity of the pseudosections is discussed in detail. It is shown that in pseudosection modelling the fractionation of FeO in accessory sulphides may cause a significant shift of field boundaries (here displaced by up to 1.5 kbar and 70 °C) and must not be neglected. Fast burial, exhumation and subsequent cooling are supported by the steepness of both the prograde and the decompressional P–T paths as well as the preservation of garnet growth zoning and the symplectitic reaction textures. These features are compatible with deep tectonic burial of the eclogite‐bearing continental crust as part of the underthrusting plate (Eastern Segment, continent Baltica) in a collisional setting that led to an effectively doubled crustal thickness and subsequent exhumation of the eclogites through tectonic extrusion. Our results are in accordance with regional structural and petrological relationships, which demonstrate foreland‐vergent partial exhumation of the eclogite‐bearing nappe along a basal thrust zone and support a major collisional stage at c. 1 Ga. We argue that the similarities between Sveconorwegian and Himalayan eclogite occurrences emphasize the modern style of Grenvillian‐aged tectonics.  相似文献   
3.
ABSTRACT The high-grade rocks (metapelite, quartzite, metagabbro) of the Hisøy-Torungen area represent the south-westernmost exposures of granulites in the Proterozoic Bamble sector, south Norway. The area is isoclinally folded and a metamorphic P–T–t path through four successive stages (M1-M4) is recognized. Petrological evidence for a prograde metamorphic event (M1) is obtained from relict staurolite + chlorite + albite, staurolite + hercynite + ilmenite, cordierite + sillimanite, fine-grained felsic material + quartz and hercynite + biotite ± sillimanite within metapelitic garnet. The phase relations are consistent with a pressure of 3.6 ± 0.5 kbar and temperatures up to 750–850°C. M1 is connected to the thermal effect of the gabbroic intrusions prior to the main (M2) Sveconorwegian granulite facies metamorphism. The main M2 granulite facies mineral assemblages (quartz+ plagioclase + K-feldspar + garnet + biotite ± sillimanite) are best preserved in the several-metre-wide Al-rich metapelites, which represent conditions of 5.9–9.1 kbar and 790–884°C. These P–T conditions are consistent with a temperature increase of 80–100°C relative to the adjacent amphibolite facies terranes. No accompanying pressure variations are recorded. Up to 1-mm-wide fine-grained felsic veinlets appear in several units and represent remnants of a former melt formed by the reaction: Bt + Sil + Qtz→Grt + lq. This dehydration reaction, together with the absence of large-scale migmatites in the area, suggests a very reduced water activity in the rocks and XH2O = 0.25 in the C–O–H fluid system was calculated for a metapelitic unit. A low but variable water activity can best explain the presence or absence of fine-grained felsic material representing a former melt in the different granulitic metapelites. The strongly peraluminous composition of the felsic veinlets is due to the reaction: Grt +former melt ± Sil→Crd + Bt ± Qtz + H2O, which has given poorly crystalline cordierite aggregates intergrown with well-crystalline biotite. The cordierite- and biotite-producing reaction constrains a steep first-stage retrograde (relative to M2) uplift path. Decimetre- to metre-wide, strongly banded metapelites (quartz + plagioclase + biotite + garnet ± sillimanite) inter-layered with quartzites are retrograded to (M3) amphibolite facies assemblages. A P–T estimate of 1.7–5.6 kbar, 516–581°C is obtained from geothermobarometry based on rim-rim analyses of garnet–biotite–plagioclase–sillimanite–quartz assemblages, and can be related to the isoclinal folding of the rocks. M4 greenschist facies conditions are most extensively developed in millimetre-wide chlorite-rich, calcite-bearing veins cutting the foliation.  相似文献   
4.
Absolute ages of migmatization in the polymetamorphic, parautochthonous basement of the Sveconorwegian Province, Sweden, have been determined using U–Pb ion probe analysis of zircon domains that formed in leucosome of migmatitic orthogneisses. Migmatite zircon was formed by recrystallization whereas dissolution–reprecipitation and neocrystallization were subordinate. The recrystallized migmatite zircon was identified by comparison of zircon in mesosomes and leucosomes. It is backscatter electron‐bright, U‐rich (800–4400 ppm) with low Th/U‐ratios (generally 0.01–0.1), unzoned or ‘oscillatory ghost zoned’, and occurs as up to 100 μm‐thick rims with transitional contacts to cores of protolith zircon. Protolith ages of 1686 ± 12 and 1668 ± 11 Ma were obtained from moderately resorbed, igneous zircon crystals (generally Th/U = 0.5–1.5, U < 300 ppm) in mesosomes; protolith zircon is also present as resorbed cores in the leucosomes. Linkage of folding, synchronous migmatization and formation of recrystallized zircon rims allowed direct dating of south‐vergent folding at 976 ± 7 Ma. At a second locality, similar recrystallized zircon rims in leucosome date pre‐Sveconorwegian migmatization at 1425 ± 7 Ma; an upper age bracket of 1394 ± 12 Ma for two overprinting phases of deformation (upright folding along gently SSW‐plunging axes and stretching in ESE) was set by zircon in a folded metagranitic dyke. Lower age brackets for these events were set at 952 ± 7 and 946 ± 8 Ma by zircon in two crosscutting and undeformed granite–pegmatite dykes. Together with previously published data the present results demonstrate: (i) Tectonometamorphic reworking during the Hallandian orogenesis at 1.44–1.42 Ga, resulting in migmatization and formation of a coarse gneissic layering. (ii) Sveconorwegian continent–continent collision at 0.98–0.96 Ga, involving (a) emplacement of an eclogite unit, (b) regional high‐pressure granulite facies metamorphism, (c) southvergent folding, subhorizontal, east–west stretching and migmatization, all of which caused overprint or transposition of older Mesoproterozoic and Sveconorwegian structures. The Sveconorwegian migmatization and folding took place during or shortly after the emplacement of Sveconorwegian eclogite and is interpreted as a result of north–south shortening, synchronous with east–west extension and unroofing during late stages of the continent–continent collision.  相似文献   
5.
We report U–Pb dates and Lu–Hf isotope data, obtained by LAM-ICPMS, for zircons from metamorphic rocks of the Setesdalen valley, situated in the Telemark block south of the classic Telemark region of southern Norway. The samples include infracrustal rocks from the metamorphic basement, metaigneous rocks and metasediments from the Byglandsfjorden supracrustal cover sequence, and metaigneous rocks which intruded the whole succession. The main crustal evolution took place from 1,550–1,020 Ma, beginning with the emplacement of juvenile tonalitic melts; the contribution of older crustal material increased with time. Around 1,320 Ma, further addition of juvenile material occurred, involving both mafic and felsic melts, metamorphism and deformation. Acid magmas with high FeO*/MgO were intruded at 1,215 Ma, coinciding with underplating elsewhere in South Norway. The period starting at 1,215 Ma is represented by supracrustal rocks, principally metarhyolites with minor mafic material and immature sediments of the Byglandsfjorden Group. The crust generation processes ended with the intrusion of diorites and granodiorites at 1,030 Ma, late in the Sveconorwegian orogeny. Regional processes of metamorphism and deformation (around 1,290 and 1,000 Ma) can be related to the assembly of Rodinia. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
6.
The age and tectonometamorphic history of massif anorthosite in the Jotun Nappe Complex, SW Norway, were investigated by zircon and titanite U–Pb ID-TIMS. The anorthosite contains sparse zircons showing complex U–Pb systematics reflecting events dated at 965 ± 4 and 913 ± 2 Ma, and a pronounced Caledonian metamorphic overprint. The oldest age is interpreted as the protolith age of the massif anorthosite. We propose that the Jotun anorthosite is related to 970–960 Ma magmatism in the Western Gneiss Region and coeval, orogen-perpendicular extension. Conversely, a 930 Ma high-grade metamorphic event in the Jotun Nappe Complex and the related Lindås Nappe is likely related to formation of the autochthonous ca. 930 Ma Rogaland anorthosite complex. We suggest that the two late- to post-orogenic AMCG events reflect two instances of lithospheric foundering below the orogen separated by ca. 20–30 my. The 913 ± 2 Ma metamorphic episode appears to date a heating event restricted to the outermost edge of the Western Gneiss Region. Leucosome formation in high-grade gneisses geographically close to the Jotun anorthosite is dated at 892 ± 4 Ma and suggested to reflect CO2-rich (?) fluid flux along shear zones.  相似文献   
7.
Widespread metasomatism affected the 100 km long and 25 km wide Proterozoic Bamble and Modum‐Kongsberg sectors, South Norway, resulting in the chemical and mineralogical transformation of wide segments of continental crust. Scapolitization was associated with veining, and was followed by albitization, transforming metagabbros pervasively over large areas. Fluids played an active role in these reactions, forming H2O‐, CO2‐ and Cl‐bearing phases at the expense of the primary volatile‐free minerals, causing depletion in Fe and infiltration of K, Mg, Na, B and P. The transformation of gabbro to scapolite metagabbro is observed as a fluid front replacing the primary magmatic mineral assemblage in three stages: during an incipient amphibolitization stage, the primary mafic minerals were replaced by anthophyllite or hastingsite, followed by pargasitic and edenitic Ca‐amphibole. Magnetite was dissolved, while rutile formed by the breakdown of ilmenite. Plagioclase was replaced by Cl‐rich scapolite (Me19‐42) reflecting Cl‐saturation, while K‐ and Mg‐saturation produced phlogopite, enstatite, sapphirine and rare corundum. The high modal contents of chlorapatite and tourmaline in the scapolite metagabbro imply infiltration of B and P. The albitites consist dominantly of albite (Ab95‐98) with varying, generally small, amounts of chlorite, calcite, rutile, epidote and pumpellyite. They formed from a H2O–CO2‐fluid rich in Na. The gabbro yields a zircon U–Pb age of 1149 ± 7 Ma and tonalite 1294 ± 38 Ma, whereas rutile from scapolite metagabbro and albitite has U–Pb ages of 1090–1084 Ma, and phlogopite produced during scapolitization Rb–Sr ages of 1070–1040 Ma. Temperature conditions for the scapolitization are inferred to have been 600–700 °C. The reported ages, combined with mineralogical and petrographic observations and inferred P–T conditions, indicate that the metasomatism was a part of the regional Sveconorwegian amphibolite facies metamorphic phase. Initial 87Sr/86Sr of the scapolite ranges from 0.704 to 0.709. The Sr‐signature, the Cl‐ and B‐rich environment and regional distribution of lithologies suggest that the fluid may have originated from evaporites that were mobilized during the regional metamorphism.  相似文献   
8.
A migmatitic orthogneiss in the Western Segment in the Sveconorwegian Province of the Baltic Shield was dated using the ion-probe U–Pb method on zircon grains, which were also analysed for rare earth elements. Mesosome zircons have 1.605±0.010 Ga magmatic cores, which places the gneiss protolith in the same 1.61–1.59 Ga time bracket as continental arc-related gneisses, abundant in this part of the Sveconorwegian Province. These cores show REE profiles with strong HREE enrichment, positive Ce- and negative Eu-anomalies, typical of magmatic zircon. Migmatite leucosomes are folded and parallel with or slightly discordant to the fabric. They contain a small population of zircon with cores and metamorphic rims, which are interpreted as xenocrysts incorporated in the leucosome during melting of the mesosome. CL-bright metamorphic embayments and rims on xenocrysts reflect 1.01±0.05 Ga Sveconorwegian metamorphic reworking. Ce-anomalies are nearly absent and Eu-anomalies are reduced relative to igneous spots. This is probably a feature of fluid controlled environments where Ce and Eu oxidation states are buffered by the metamorphic fluid. From this and discordant rims from the mesosome we also conclude that the rims formed by reworking of the older zircon where the Pb-loss was also fluid induced. In the leucosome veins, magmatic acicular zircon gives 0.92±0.01 Ga, ascribed to the crystallisation of the veins. They originated by local melting, probably augmented by magma that formed at a deeper level. Widespread granitic and noritic late-Sveconorwegian magmatism close to 0.92 Ga in other parts of the Western Segment has equivalents in the Norwegian sectors of the Sveconorwegian Province. Leucosome formation was therefore part of a regional event related to exhumation of the Sveconorwegian Eastern Segment. We also provide the first unequivocal evidence for ductile deformation related to late-Sveconorwegian magmatism.  相似文献   
9.
New palaeomagnetic results for the 935 Ma Göteborg-Slussen mafic dykes in southern Sweden provide a well-dated high-quality palaeomagnetic pole for Early Neoproterozoic Baltica. New U-Pb geochronological data for several palaeomagnetically studied mafic intrusions yield three additional well-dated palaeopoles and one virtual geomagnetic pole. This set of dated poles suggests minimal drift of Baltica in moderate latitudes between ∼965 and 915 Ma. They also support the hypothesis of a post-900 Ma regional remagnetization event in SW Sweden and SW Norway. The positions of three distinct clusters of ∼1100 to 850 Ma palaeopoles suggest a clockwise time progression of the Baltica apparent polar wander path (the Sveconorwegian Loop) during this time interval. New well-dated palaeomagnetic poles for ∼970 to 900 Ma from Laurentia are required to verify the palaeogeographic reconstructions of Baltica and Laurentia.  相似文献   
10.
Relict eclogites and associated high-pressure rocks are present in the Eastern Segment of the SW Swedish gneiss region (the tectonic counterpart of the Parautochthonous Belt of the Canadian Grenville). These rocks give evidence of Sveconorwegian eclogite facies metamorphism and subsequent pervasive reworking and deformation at granulite and amphibolite facies conditions. The best-preserved eclogite relics suggest a clockwise PT t history, beginning in the amphibolite facies, progressing through the eclogite facies, decompressing and partially reequilibrating through the high- and medium-pressure granulite facies, before cooling through the amphibolite facies. Textures demonstrate the former coexistence of the plagioclase-free assemblages garnet+clinopyroxene+quartz+rutile+ilmenite, garnet+clinopyroxene+ kyanite+rutile, and garnet+kyanite+quartz+rutile. The former existence of omphacite is evidenced by up to 45 vol.% plagioclase expelled as small grains within large clinopyroxene. Matrix plagioclase is secondary and occurs expelled from clinopyroxene or in fine-grained, granulite facies reaction domains formed during resorption of garnet and kyanite. Garnet shows preserved prograde growth zoning with rimward increasing pyrope content, decreasing spessartine content and decreasing Fe/(Fe+Mg) ratio, but is partly resorbed and reequilibrated at the rims. PT estimates from microdomains with clinopyroxene+plagioclase+quartz+garnet indicate pressures of 9.5–12 kbar and temperatures of 705–795 °C for a stage of the granulite facies decompression. The preservation of the prograde zoning suggests that the rocks did not reside at these high temperatures for more than a few million years, and chemical disequilibrium and ‘frozen’ reaction textures indicate heterogeneous reaction progress and overstepping of reactions during the decompression through the granulite facies. Together these features suggest a rapid tectonic exhumation. The eclogite relics occur within a high-grade deformation zone with WNW–ESE stretching and associated oblique normal-sense, top-to-the-east (sensu lato) displacement, suggesting that extension was a main cause for the decompression and exhumation. Probable tectonic scenarios for this deformation are Sveconorwegian late-orogenic gravitational collapse or overall WNW–ESE extension.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号