首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  国内免费   1篇
测绘学   2篇
地质学   1篇
海洋学   18篇
  2015年   1篇
  2013年   6篇
  2006年   3篇
  2005年   2篇
  2003年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
利用1992~2001年Topex/Poseidon卫星高度计遥感资料分析了太平洋东南海域 (5°~55°S ,70°~110°W)海面高度的季节及年际变化特征。研究结果表明 ,海区海面高度的季节变化总体上受太阳辐射季节变化的影响 ,南半球夏季 (1~3月 )和秋季 (4~6月 )大致为正距平 ,而冬季 (7~9月 )和春季 (10~12月 )大致为负距平 ,1996~1998年除外 ;同时 ,受季节性风场、海区罗斯贝波等的影响 ,海面高度变化的区域特征性很强。海面高度的年际变化在低纬处和沿岸还受ElNino影响。  相似文献   
2.
利用Topex/Posedion卫星的SSHA数据对黄、东海1993-2001年期间的平均海面地形的空间形态特征、变化速率的空间分布特征及年内变化特征等3个方面进行了分析.研究结果表明,该海区9a平均海面地形的基本特征为:东南高、西北低,由东南向西北倾斜,最大高差超过90 cm;1993-2001年期间全海区均呈现海面上升趋势,上升速率值在5~8.6 mm/a之间,海面上升的空间分异表现为南快北慢,东快西慢.海面地形的年内变化在时间上呈正弦波动,空间上中、北部区域变化速度快,年较差大;南部区域变化速度慢,年较差小;变化空间特征复杂.  相似文献   
3.
On 7 December 2001, Jason-1 was successfully launched by a Boeing Delta II rocket from the Vandenberg Air Force Base, California. The Jason-1 satellite will maintain the high accuracy altimeter service provided since 1992 by TOPEX/Poseidon (T/P), ensuring the continuity in observing and monitoring the Ocean Dynamics (intraseasonal to interannual changes, mean sea level, tides, etc.). Despite one-fourth the mass and power, the Jason-1 system has been designed to have basically the same performance as T/P, measuring sea surface topography at a centimetric level. This new CNES/NASA mission also provides near real-time data for sea state and ocean forecast. The first two months of the Jason-1 mission have been dedicated to the assessment of the overall system. The goals of this assessment phase were:

1. To assess the behavior of the spacecraft at the platform and payload levels (Jason-1 being the first program to call on the PROTEUS versatile multimission platform for Low and Medium Earth Orbit Missions developed in partnership between Alcatel Space and CNES);

2. To verify that platform performance requirements are met with respect to Jason-1 requirements;

3. To verify that payload instruments performance requirements evaluated at instrument level are met;

4. To assess the performance of the Jason-1 Ground System.

This article will display the main outputs of the assessment of the system. It will demonstrate that all the elements of the onboard and ground systems are within the specifications. Provision of data to the Jason-1 Science Working Team started at the end of March 2002. This is the goal of a six-month phase after closure of the initial assessment phase to derive the error budget of the system in terms of altimetry user products.  相似文献   
4.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as ±0.3 m, and surface wind speed of ±1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ ±1.4 nos) over those determined earlier with GEOSAT data.  相似文献   
5.
太平洋东南海域表层地转流场的季节及年际变化特征   总被引:1,自引:0,他引:1  
利用1992~2001年Topex/Poseidon卫星高度计遥感资料分析了太平洋东南海域(5°~55°S,70°~120°W)表层流场的季节及年际变化特征。结果表明,南赤道流的季节变化主要体现在流速上,而秘鲁海流和西风漂流主要体现在流轴位置的移动上。表层流场的年际变化受El Nino影响,在El Nino期间,南赤道流和秘鲁海流均发生流向偏转现象,大部分海区流场被削弱(除低纬度海区外),而在其后的1998年La Nina期间,流场则重新被加强,西风漂流无明显的年际变化。  相似文献   
6.
The effect of sea surface height (SSH) variability is one of the primary factors that limit the accuracy and resolution of altimeter-derived gravity values. We propose a method to estimate the influence of variation of the sea surface height on the accuracy of satellite-derived gravity by simulation technique, with a case study around Indonesian waters. Wederived an Indonesian marine gravity map using the Geosat-geodetic mission (GM). Since most of the area studied is located around coastal and shallow areas, the measurement of SSH of this area is less accurate. To obtain a distribution of SSH variability over the study area, Topex/Poseidon (T/P) data were first processed and assessed. Processing 52 cycles of the Topex/Poseidon data, the root mean square (RMS) of SSH variability for each cycle was found to vary from 1 to 179 cm. Further, for the purpose of estimating the accuracy of altimeter-derived gravity, we derived several levels of Gaussian noise, computed simulation data by adding the Gaussian noise to Geosat data, and determined simulated gravity maps. Based on the distribution of RMS values from T/P data and standard deviation (STD) differences between the simulated and the original gravity maps, we estimated the accuracy of the gravity map. Around Indonesian waters, the accuracy of the gravity map influenced by SSH variation was estimated to be within the range 0.8~93 mgal.  相似文献   
7.
Field biological and geomorphological observations in certain East Asia coasts permit definition of Mean Sea Level (MSL) with an accuracy of ~10 cm, that is, a vertical geodetic datum, as well as recognition of the MSL of fossil shorelines, up to a few thousand years old, mainly associated with tectonic/seismic effects. Subsidence produced by compaction of nearly-surficial strata seems also to be a usual effect. These data indicate that datum variability is a widespread effect in East Asia, time-dependent even at time scales affecting engineering works, but only in a few cases fully predictable.  相似文献   
8.
We present an improved crossover adjustment procedure to determine mean sea surface height using TOPEX, 35-day repeat phase ERS-1, Geosat, and 168-day repeat phase ERS-1 satellite altimeter data. The mean sea surface frame defined by the TOPEX data is imposed as certain constraints in our crossover adjustment procedure rather than held fixed as in some other procedures. The new procedure is discussed in detail. Equations are developed to incorporate the a priori information of Topex data as well as other satellite altimeter data. The numerical computation result shows that the rms crossover discrepancies are reduced by an order of 1 cm when the Topex data is not fixed. Furthermore, the computed mean sea surface is less noisy and more realistic than that computed by the traditional procedure.  相似文献   
9.
《Marine Geodesy》2013,36(3-4):147-157
On 7 December 2001, Jason-1 was successfully launched by a Boeing Delta II rocket from the Vandenberg Air Force Base, California. The Jason-1 satellite will maintain the high accuracy altimeter service provided since 1992 by TOPEX/Poseidon (T/P), ensuring the continuity in observing and monitoring the Ocean Dynamics (intraseasonal to interannual changes, mean sea level, tides, etc.). Despite one-fourth the mass and power, the Jason-1 system has been designed to have basically the same performance as T/P, measuring sea surface topography at a centimetric level. This new CNES/NASA mission also provides near real-time data for sea state and ocean forecast. The first two months of the Jason-1 mission have been dedicated to the assessment of the overall system. The goals of this assessment phase were: 1. To assess the behavior of the spacecraft at the platform and payload levels (Jason-1 being the first program to call on the PROTEUS versatile multimission platform for Low and Medium Earth Orbit Missions developed in partnership between Alcatel Space and CNES); 2. To verify that platform performance requirements are met with respect to Jason-1 requirements; 3. To verify that payload instruments performance requirements evaluated at instrument level are met; 4. To assess the performance of the Jason-1 Ground System. This article will display the main outputs of the assessment of the system. It will demonstrate that all the elements of the onboard and ground systems are within the specifications. Provision of data to the Jason-1 Science Working Team started at the end of March 2002. This is the goal of a six-month phase after closure of the initial assessment phase to derive the error budget of the system in terms of altimetry user products.  相似文献   
10.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as - 0.3 m, and surface wind speed of - 1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ - 1.4 nos) over those determined earlier with GEOSAT data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号