首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
海洋学   14篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2000年   1篇
排序方式: 共有14条查询结果,搜索用时 717 毫秒
1.
A moving particle image velocimetry (PIV) system was successfully developed and used in a large towing tank for ship model tests to observe velocity fields near ship models. The experimental method involved adjustable optical devices for various test conditions and a special particle-seeding device. The streamwise and cross-streamwise flow fields of a yacht model and a tanker model were measured. Ship type, bottom shape, and towing speed were found to be the causes of problems affecting optical access and image quality. Possible solutions, deeper optical ducts, dark painting color, and pre-processed analysis method, were proposed and discussed.  相似文献   
2.
Ship motions after damage are difficult to evaluate since they are affected by complex phenomena regarding fluid and structures interactions. The possibility to better understand how ship behavior in damage is influenced by these phenomena is important for improving ship safety, especially for passenger vessel.In this paper an experimental campaign is carried out on a passenger ferry hull, to show the effects of the water dynamics across damage openings on ship motions. Novel aspects of this research include the study of the effects of the damage position on the ship roll response. The study is carried out for still water and for beam regular waves at zero speed.Results from the experiments carried out underline that the roll behavior of a damaged ship is affected by the position of damage opening and not only by its size. Assuming the same final equilibrium conditions after flooding but characterized by different damage openings it is possible to observe how motions RAOs and roll decay characteristics modify according to the opening locations.  相似文献   
3.
All but the smallest classes of modern keelboats are fitted with inboard engines and consequently, when making way under sail, the craft experience parasitic drag due to trailing propellers and associated appendages. The variety of screw configurations used on sailing boats includes fixed-blade, feathering, and folding set-ups, with blades numbering two or three. Although the magnitude of the resultant drag is thought to have a significant influence on sailing performance, the published literature having regard to this problem is sparse. Here, the aim was to evaluate the drag effect of fixed-blade propellers of types commonly used on sailing craft. The results of towing tank tests on full-scale propellers are presented for the locked shaft condition; these are presented along with reconfigured data from the few previously published sources. For the case in which the propeller is allowed to rotate, tests were conducted on a typical screw with a range of braking torques being applied. It was hypothesised that the performance coefficients of the Wageningen B-Screw Series could be used to characterise adequately the types of screw of interest and that these could be extrapolated to enable prediction of the drag of a freewheeling propeller; an assessment of this formed part of the investigation.  相似文献   
4.
The equations of motion for the coupled dynamics of a small liferaft and fast rescue craft in a surface wave are formulated in two dimensions using the methods of Kane and Levinson [1985. Dynamics: Theory and Applications. McGraw-Hill Inc., New York]. It is assumed that the motion normal to the wave surface is small and can be neglected, i.e. the bodies move along the propagating wave profile. The bodies are small so that wave diffraction and reflection are negligible. A Stokes second order wave is used and the wave forces are applied using Morison's equation for a body in accelerated flow. Wind loads are similarly modelled using drag coefficients. The equations are solved numerically using the Runge–Kutta routine “ode45” of MATLAB®. The numerical model provides guidelines for predicting the tow loads and motions of small craft in severe sea states.  相似文献   
5.
One of the most important aspects, in the ACS and multi stepped hull design, is the choice of the geometrical shape of the cavity and the steps. In this article a complete experimental and numerical campaign on a multi stepped ACS has been carried out, varying the velocity and the air flow rate under the hull. The experimental tests have been conducted in an ITTC Towing Tank allowing to validate the numerical simulations obtained by means of a CFD U-RANSe (Unesteady Reynolds Averaged Navier-Stokes equations) code. The CFD setup is described in detail. From this campaign a critical analysis of the Froude number influence on the air cushion shape has been argued. The authors identified four different behaviours, from low to very high Froude numbers. The use of CFD has allowed to observe quantities of difficult evaluation by means of traditional experimental test, as e.g. the frictional component of the resistance, the airflow path lines and the volume of fraction in transversal and longitudinal sections. The results have been discussed.  相似文献   
6.
Mark A. Grosenbaugh   《Ocean Engineering》2007,34(11-12):1532-1542
The dynamic behavior of a towed cable system that results from the tow ship changing course from a straight-tow trajectory to one involving steady circular turning at a constant radius is examined. For large-radius ship turns, the vehicle trajectory and vehicle depth assumed, monotonically and exponentially, the large-radius steady-state turning solution of Chapman [Chapman, D.A., 1984. The towed cable behavior during ship turning manoeuvers. Ocean Engineering 11, 327–361]. For small-radius ship turns, the vehicle trajectory initially followed a corkscrew pattern with the vehicle depth oscillating about and eventually decaying to the steady-state turning solution of Chapman (1984). The change between monotonic and oscillatory behavior in the time history of the vehicle depth was well defined and offered an alternate measure to Chapman's (1984) critical radius for the transition point between large-radius and small-radius behavior. For steady circular turning in the presence of current, there was no longer a steady-state turning solution. Instead, the vehicle depth oscillated with amplitude that was a function of the ship-turning radius and the ship speed. The dynamics of a single 360° turn and a 180° U-turn are discussed in terms of the transients of the steady turning maneuver. For a single 360° large-radius ship turn, the behavior was marked by the vehicle dropping to the steady-state turning depth predicted by Chapman (1984) and then rising back to the initial, straight-tow equilibrium depth once the turn was completed. For small ship-turning radius, the vehicle dropped to a depth corresponding to the first trough of the oscillatory time series of the steady turning maneuver before returning to the straight-tow equilibrium depth once the turn was completed. For some ship-turning radii, this resulted in a maximum vehicle depth that was greater than the steady-state turning depth. For a 180° turn and ship-turning radius less than the length of the tow cable, the vehicle never reached the steady-state turning depth.  相似文献   
7.
The dynamic response of a towed cable system to ship maneuver is parametrically simulated. Three dimensionless parameters influence on towed cable system maneuverability is investigated. They are ratio of total length to turning radius R/L, ratio of cable mass to vehicle mass σ, and ratio of mass unit length to hydrodynamic force w/r. An oscillatory motion of towed vehicle is found in simulation of spiral towed courses. Features of this oscillation in different spiral courses are compared. The sharp turns, gradual turns and their transient states of towed cable dynamics for different course directions are discussed extensively. According to the characters of transient states and horizontal trajectories evolution of maneuvered cable system, the dynamic behaviors can be divided into three situations in Fig. 8 turning maneuvers. The behavior of towed cable system during a zigzag turning course is simulated in the end. Two ingredients of heave motion are found during small ratio of turning radii to length in this course. The primary damp to initial turning becomes weak and the response to alternative turns plays a more and more important role. The damping properties of the transient behavior in different maneuvers show a periodical invariance to σ during some turning maneuvers.  相似文献   
8.
It is ideal to design the best hull shape for a floating production storage and offloading unit (FPSO) that meets all performance criteria from an engineering point of view. However, in reality, it is difficult to satisfy all the criteria at the same time. If one of the performances cannot meet the criteria, then additional equipment or systems are installed to improve that performance. In this paper, when an FPSO cannot meet the towing stability inherently, we attempt to establish a procedure for determining an auxiliary towing system. Firstly, various systems that can be applied to the FPSO are compared and reviewed to improve the towing stability of the FPSO. Among them, using three active thrusters was chosen as the auxiliary towing system. Improvement of towing stability was verified from a towing model test conducted at the Maritime Research Institute Netherlands (MARIN). However, thruster cavitation was raised as a key problem when using thrusters for a purpose for which they were not intended. A thruster cavitation model test was additionally performed to check the safety of the thrusters. Based on these results, a safe operating range under extreme condition was confirmed by observing the occurrence of thruster cavitation. The predicted maximum unit total thrust of each thruster was compared with the observed safe operating range. Finally, the effectiveness and safety of the auxiliary towing system was verified.  相似文献   
9.
This work addresses the experimental and numerical study of a stepped planing hull and the related fluid dynamics phenomena typically occurring in the stepped hull in the unwetted aft body area behind the step. In the last few years, the interest in high-speed planing crafts, with low weight-to-power ratios, has been increasing significantly, and, in such context, naval architects have been orienting toward the stepped hull solution. Stepped planing hulls ensure good dynamic stability and seakeeping qualities at high speeds. This is mainly due to the reduction of the wetted area, which is caused by the flow separation occurring at the step. This paper presents the experimental results of towing tank tests in calm water on a single-step hull model, which is the first model of a new systematic series. The same flow conditions are analyzed via Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES), with different moving mesh techniques (overset/chimera and morphing grid), performed at different model speeds. The numerical results are in accordance with experimental data, and overset/chimera grid is found to be the best approach between the analyzed ones. The flow patterns obtained numerically through LES on a refined grid appear similar to the ones observed in towing tank investigations through photographic acquisitions. These flow patterns are dominated by a rather complex 3D arrangement of vortices originating from air spillage at both sides of the step. The understanding of these phenomena is important for the effectiveness of stepped hull designs.  相似文献   
10.
Extensive use of autonomous underwater vehicles (AUVs) in oceanographic applications necessitates investigation into the hydrodynamic forces acting over an AUV hull form operating under deeply submerged condition. This paper presents a towing tank-based experimental study on forces and moment on AUV hull form in the vertical plane. The AUV hull form considered in the present program is a 1:2 model of the standard hull form Afterbody1. The present measurements were carried out at typical speeds of autonomous underwater vehicles (0.4-1.4 m/s) by varying pitch angles (0-15°). The hydrodynamic forces and moment are measured by an internally mounted multi-component strain gauge type balance. The measurements were used to study variation of axial, normal, drag, lift and pitching moment coefficients with Reynolds number (Re) and angle of attack. The measurements have also been used to validate results obtained from a CFD code that uses Reynolds Average Navier-Stokes equations (ANSYS™ Fluent). The axial and normal force coefficients are increased by 18% and 195%; drag, lift and pitching moment coefficients are increased by 90%, 182% and 297% on AUV hull form at α=15° and Rev=3.65×105. These results can give better idea for the efficient design of guidance and control systems for AUV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号