首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   11篇
  国内免费   3篇
测绘学   2篇
地球物理   18篇
地质学   32篇
海洋学   1篇
自然地理   11篇
  2022年   1篇
  2020年   2篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   6篇
  2004年   1篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
2.
Understanding the evolution of geochemical and geomorphic systems requires measurements of long-term rates of physical erosion and chemical weathering. Erosion and weathering rates have traditionally been estimated from measurements of sediment and solute fluxes in streams. However, modern sediment and solute fluxes are often decoupled from long-term rates of erosion and weathering, due to storage or re-mobilization of sediment and solutes upstream from the sampling point. Recently, cosmogenic nuclides such as 10Be and 26Al have become important new tools for measuring long-term rates of physical erosion and chemical weathering. Cosmogenic nuclides can be used to infer the total denudation flux (the sum of the rates of physical erosion and chemical weathering) in actively eroding terrain. Here we review recent work showing how this total denudation flux can be partitioned into its physical and chemical components, using the enrichment of insoluble tracers (such as Zr) in regolith relative to parent rock. By combining cosmogenic nuclide measurements with the bulk elemental composition of rock and soil, geochemists can measure rates of physical erosion and chemical weathering over 1000- to 10,000-year time scales.  相似文献   
3.
The Gulf of Corinth in central Greece is an active normal fault zone with particularly clear evidence of isostatic footwall uplift, constrained by Quaternary marine terraces, and hanging-wall subsidence and sedimentation. It is bounded to the south by a Pliocene to Early Pleistocene sedimentary basin, which is now eroding into the Gulf. Previous work has suggested that the relief across this region has increased dramatically since the Early Pleistocene, due to the isostatic response to increased rates of footwall erosion and hanging-wall sedimentation. It is indeed assumed here that incision accompanying the draw-down of global sea-level at 0.9 Ma, during the first major Pleistocene glaciation, initiated the erosion of the basin south of the Gulf of Corinth and so abruptly increased the sedimentation rate in the Gulf. The resulting transient thermal and isostatic response to these changes is modelled, with the subsiding depocentre and eroding sediment source coupled by flow in the lower continental crust. The subsequent enhancement of relief, involving an increase in bathymetry from near zero to 900 m and 500 m of uplift of the eroding land surface in the sediment source, is shown to be a direct consequence of this change. The model is sensitive to the effective viscosity of the lower crust, and can thus resolve this parameter by matching observations. A value of 6×1019 Pa s is indicated, suggesting a viscosity at the Moho no greater than 1018 Pa s. Similar transient topographic effects caused by increased rates of sedimentation and erosion are likely to be widespread within the geological record, suggesting that this coupling process involving flow in the weak lower crust may be of major geological and geomorphological importance.  相似文献   
4.
Namibia's passive continental margin records a long history of tectonic activity since the Proterozoic. The orogenic belt produced during the collision of the Congo and Kalahari Cratons in the Early Proterozoic led to a zone of crustal weakness, which became the preferred location for tectonism during the Phanerozoic. The Pan-African Damara mobile belt forms this intraplate boundary in Namibia and its tectonostratigraphic zones are defined by ductile shear zones, where the most prominent is described as the Omaruru Lineament–Waterberg Thrust (OML–WT). The prominance of the continental margin escarpment is diminished in the area of the Central and Northern Zone of the Damara belt where the shear zones are located. This area has been targeted with a set of 66 outcrop samples over a 550-km-long, 60-km-broad coast-parallel transect from the top of the escarpment in the south across the Damara sector to the Kamanjab Inlier in the north. Apatite fission track age and length data from all samples reveal a regionally consistent cooling event. Thermal histories derived by forward modelling bracket this phase of accelerated cooling in the Late Cretaceous. Maximum palaeotemperatures immediately prior to the onset of cooling range from ca. 120 to ca. 60 °C with the maximum occurring directly south of the Omaruru Lineament. Because different palaeotemperatures indicate different burial depth at a given time, the amount of denudation can be estimated and used to constrain vertical displacements of the continental crust. We interpret this cooling pattern as the geomorphic response to reactivation of basement structures caused by a change in spreading geometry in the South Atlantic and South West Indian Oceans.  相似文献   
5.
Apatite fission track analysis was performed on 56 samples from central Spain to unravel the far field effects of the Alpine plate tectonic history of Iberia. The modelled thermal histories reveal complex cooling in the Cenozoic, indicative of intermittent denudation. Accelerated cooling events occurred across the Spanish Central System (SCS) from the Middle Eocene to Recent. These accelerated cooling events resulted in up to 2.8±0.9 km of denudation in the western Sierra de Gredos and 3.6±1.0 km in the central and eastern Gredos (assuming a paleogeothermal gradient of 28±5 °C and a surface temperature of 10 °C). The greatest amount of denudation (5.0±1.6 km) occurred in the Sierra de Guadarrama. Accompanying rock uplift was 4.7±1.0 and 5.9±1.6 km in the eastern Gredos and Guadarrama, respectively. Most denudation in the Gredos occurred from the Middle Eocene to the Early Miocene and can be related to the N–S stress field, induced by the Pyrenean compression. In the Guadarrama, the greatest denudation was Pliocene to Recent of age and seems related to the ongoing NW–SE Betic compression. The fact that the formation of the E–W trending Gredos coincides with the N–S Pyrenean compression and the creation of the present day morphology of the NE–SW trending Guadarrama with the younger NW–SE Betic compression, indicates that they record the far field effects of Alpine plate tectonics on Iberia. The trend of pre-existing lineaments was of major importance in influencing the style and magnitude of these of far field effects.  相似文献   
6.
剥蚀及地幔作用下青藏高原隆升过程的数值模拟   总被引:7,自引:2,他引:7       下载免费PDF全文
修改了England和Mckenzie的黏性薄层流变模型中控制大陆形变的连续性方程,将剥蚀作用对高原隆升演化的影响直接引入该方程,并考虑下伏地幔小尺度对流对增厚岩石层的搬离作用对高原隆升演化后期的影响,用有限差分法直接模拟青藏高原隆升过程. 数值模拟结果所显示的高原隆升演化过程与实际观测资料吻合较好,揭示了高原隆升演化过程的非平稳和多阶段的特性;同时还表明上地幔小尺度对流对岩石层底部的搬离作用可能是最近8Ma以来高原快速隆升的主导机制.  相似文献   
7.
Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at forested sites in the Andes Mountains (Ecuador), the southern Appalachian Mountains (USA), and the Luquillo Mountains (Puerto Rico). Using a portable rainfall simulator–infiltrometer (all three areas), and a single ring infiltrometer (Andes), we determined infiltration rates, even on steep slopes. Based on these results, we examine the spatial variability of infiltration, the relationship of rainfall runoff and infiltration to landscape position, the influence of vegetation on infiltration rates on slopes, and the implications of this research for better understanding erosional processes and landscape change.Infiltration rates ranged from 6 to 206 mm/h on lower slopes of the Andes, 16 to 117 mm/h in the southern Appalachians, and 0 to 106 mm/h in the Luquillo Mountains. These rates exceed those of most natural rain events, confirming that surface runoff is rare in montane forests with deep soil/regolith mantles. On well-drained forested slopes and ridges, apparent steady-state infiltration may be controlled by the near-surface downslope movement of infiltrated water rather than by characteristics of the full vertical soil profile. With only two exceptions, the local variability of infiltration rates at the scale of 10° m overpowered other expected spatial relationships between infiltration, vegetation type, slope position, and soil factors. One exception was the significant difference between infiltration rates on alluvial versus upland soils in the Andean study area. The other exception was the significant difference between infiltration rates in topographic coves compared to other slope positions in the tabonuco forest of one watershed in the Luquillo Mountains. Our research provides additional evidence of the ability of forests and forest soils to preserve geomorphic features from denudation by surface erosion, documents the importance of subsurface flow in mountain forests, and supports the need for caution in extrapolating infiltration rates.  相似文献   
8.
Erosion is a complex process consisting of many components such as surface runoff, impact of raindrops, wind forces, soil and rock mechanics, etc. Trying to integrate all these processes into a physical model seems to be hopeless. In order to understand the variety of natural shapes and patterns produced by erosion we present an integrated statistical approach. Our model is based on simple physical constraints for the separation of amalgamated particles (abrasion) and for the movement of loose particles (denudation) and on the laws of statistics. After some simplifications, we obtain a nonlinear system of partial differential equations which is solved using finite volume techniques. The model is suitable for the formation of different types of rill systems and the episodic behaviour of erosion processes, a kind of self-organized criticality. Besides effects of inhomogeneities, e.g. the formation of terraces can be investigated.  相似文献   
9.
10.
位于藏东-滇西高原构造急剧转折地段的独龙江地区,其花岗岩体内系统垂向取样的9个花岗闪长岩样品的磷灰石裂变径迹年龄数据在4~6.8Ma之间.裂变径迹分析显示样品应处于剥露的部分退火带,其表观年龄主体表现为冷却年龄,部分具混合年龄特征.热史分析揭示出岩体至少记录了自晚中新世以来的3个显著冷却阶段.早期的时限可推至约13~8Ma,中、晚期的时限分别在约5.5Ma和2.8Ma,基本可以与区域上的不整合相对应.依据冷却史推导的各阶段剥蚀速率分别为0.10~0.12mm/a,0.26~0.3mm/a和0.85~1.02mm/a,可以与藏东-滇西高原周缘及邻区的盆地沉积记录相对应.研究结果为探讨藏东-滇西高原晚中新世以来的构造抬升-伸展变形提供了定量的参照时限.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号