首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Capturing the essential spatial variability in distributed hydrological modelling: Hydraulic roughness
Authors:Baxter E Vieux  Nadim S Farajalla
Abstract:The spatial variability of each parameter affecting storm runoff must be accounted for in distributed modelling. The objective of the work reported here is to assess the effects of using distributed versus lumped hydraulic roughness coefficients in the modelling of direct surface runoff. A spatially variable data set composed of Manning roughness coefficients is used to model direct surface runoff. To assess the information content (as measured by entropy) of spatially variable data and its significance in distributed modelling, various degrees of smoothing are applied. The error resulting from smoothing the hydraulic roughness coefficients is determined by modelling overland flow using a finite element solution. The Manning roughness coefficients were taken from field measurements of the Manning roughness coefficient at 0.6 m on a 14 m hillslope. These values were then used in a numerical simulation of outflow hydrographs to investigate the dependence of error on spatial variability. Our study focuses on the characteristics of spatial data used in distributed hydrological modelling. The field sites have fractal dimensions of ≈? 1.4, which is close to a Brownian variation. The sampling interval that captures the essential spatial variability of the Manning roughness coefficient does not seem to matter due to its Brownian variation in the field sites. Hence due to the nearly uniform random distribution, measurements at 0.6 m intervals are not necessary and larger intervals would yield results that are just as acceptable provided the mean value together with a uniformly random distribution is maintained for any size of finite element or sampling resolution. Because detailed measurements of hydraulic roughness are not practically available for deterministic catchment modelling, it is important to know that larger sampling resolutions may be used than 0.6 m.
Keywords:Hydrological processes  Distributed modeling  Spatial scales  Numerical simulations  Flood  predictions  Geographical information systems  Entropy  Fractal dimensions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号