首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stable W Isotope Measurements of Geological Reference Materials and Tungsten Ore Minerals by Double Spike MC-ICP-MS
Authors:Tianli Zhang  Jia Liu  Qun Zhang  Yingnan Zhang  Liping Qin
Institution:Deep Space Exploration Laboratory / CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei, 230026 China
Abstract:This study presents high-precision W isotopic measurement results using the 180W-183W double spike technique with MC-ICP-MS. The effects of isobaric and polyatomic interferences on W isotopic measurements were evaluated. The δ186/184W values were not significantly affected when the solution had Hf/W ≤ 3 × 10-4, Ta/W ≤ 1, Os/W ≤ 0.06, Ce/W ≤ 0.0075, Nd/W ≤ 3.5 and Sm/W ≤ 5. The intermediate measurement precisions of both standard solutions (NIST SRM 3163 and Alfa Aesar W) and geological reference materials (NOD-A-1) were better than ±0.024‰ (2s). We also obtained a precision of 0.026‰ for a minimum sample loading mass of 5 ng, allowing the analysis of samples with low W contents. Replicated measurements of geological reference materials (AGV-2, BCR-2, BHVO-2, GSP-2, RGM-1, SDC-1, NOD-A-1 and NOD-P-1) yielded δ186/184W values ranging from 0.017‰ to 0.144‰. The δ186/184W values of two major tungsten ore minerals (scheelite and wolframite) were reported and compared herein. Scheelites had systematically slightly heavier W isotopic compositions than wolframites, which may reflect differences in the crystal structure. The resolvable variations of stable/mass-dependent W isotopic compositions in rocks and ore minerals make W isotopes a novel tool for studying hydrothermal mineralisation processes and the W cycle of geological reservoirs.
Keywords:W isotopes  MC-ICP-MS  double spike  interference  tungsten ore minerals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号