首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-density nitrogen inclusions in barite from a giant siderite vein: implications for Alpine evolution of the Variscan basement of Western Carpathians, Slovakia
Authors:V HURAI  W PROCHASKA  O LEXA  K SCHULMANN  R THOMAS  P IVAN
Institution:Geological Institute, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia ();
Institut für Geowissenschaften, Montanuniversität Leoben, 8700 Leoben, Austria;
Institute of Petrology and Structural Geology, Charles University, 128 43 Praha, Czech Republic;
UniversitéLouis Pasteur, UMR CNRS 7516-17, 1 Rue Blessig, Strasbourg, France;
GeoforschungsZentrum, Telegrafenberg A51, 144 73 Potsdam, Germany;
Department of Geochemistry, Comenius University, 842 15 Bratislava, Slovakia
Abstract:Contrasting compositions and densities of fluid inclusions were revealed in siderite–barite intergrowths of the Dro?diak polymetallic vein hosted in Variscan basement of the Gemeric unit (Central European Carpathians). Primary two‐phase aqueous inclusions in siderite homogenized between 101 and 165 °C, total salinity ranged between 18 and 27 wt%, and CaCl2/(NaCl + CaCl2) weight ratios were fixed at 0.1–0.3. By contrast, mono‐ and two‐phase aqueous inclusions in barite exhibited total salinities between 2 and 22 wt%, and the CaCl2/NaCl ratios ranged from NaCl‐ to CaCl2‐dominated compositions. The aqueous inclusions in barite were closely associated with very high‐density (0.55–0.745 g cm?3) nitrogen inclusions, in some cases containing up to 16 mol.% CO2. Crystallization P–T conditions of siderite (175–210 °C, 1.2–1.7 kbar) constrained by the vertical oxygen isotope gradient along the studied vein, isochores of fluid inclusions and the K/Na exchange thermometer corresponded to minimal palaeodepths between 4.3 and 6.3 km, assuming lithostatic load and average crust density of 2.75 g cm?3. Maximum fluid pressure during barite crystallization attained 3.6–4.4 kbar at 200–300 °C, and the most dense nitrogen inclusions maintained without decrepitation the residual internal pressure of 2.2 kbar at 25 °C. Contrasting fluid compositions, increasing depths of burial (~4–14 km) and decreasing thermal gradients (~40–15 °C km?1) during initial mineralization stages of the Dro?diak vein reflect Alpine orogenic processes, rather than an incipient Permian rifting suggested in previous metallogenetic models. Siderite crystallized at rising P–T in a closed, rock‐buffered hydrothermal system developed in the Variscan basement during the north‐vergent Cretaceous thrusting and thickening of the Gemeric crustal wedge. Variable salinities of the barite‐hosted inclusions reflect a fluid mixing in open hydrothermal system, and re‐equilibration textures (lengths of decrepitation cracks proportional to fluid inclusion sizes) correspond to retrograde crystallization trajectory coincidental with transpression or unroofing. Maximum recorded fluid pressures indicate ~12‐km‐thick pile of imbricated nappe units accumulated over the Gemeric basement during the Cretaceous collision.
Keywords:Alpine metamorphism  barite  nitrogen  siderite  Western Carpathians
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号