首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamical evolution of NEAs: Close encounters, secular perturbations and resonances
Authors:Patrick Michel  Christiane Froeschlé and Paolo Farinella
Institution:(1) Dept. Cassini, Observatoire de la Côte d'Azur, B.P. 229, 06304, 4 Nice Cedex, France
Abstract:We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some ldquofast-trackrdquo dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.On leave from the Department of Mathematics, University of Pisa, Via Buonarroti 2, 56127 Pisa, Italy, thanks to the ldquoG. Colombordquo fellowships of the European Space Agency.
Keywords:Near-Earth asteroids  Resonances  Close encounters
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号