首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluating the effect of land development on sediment transport using a probability density function
Authors:T V Hromadka II  R J Whitely
Institution:(1) Boyle Engineering, 1501 Quail St., 92658-9020 Newport Beach, CA;(2) Dept. of Mathematics, University of California, 92717 Irvine, CA
Abstract:An important problem in sedimentation analysis is the development of a channel section that preserves, as best as possible, the current sedimentation regime even though the flood frequency tendencies have been altered due to land development within the catchment. In order to accomplish this task, a methodology is needed that estimates sediment transport capacity for various channel configurations. Such a procedure is described which allows the computation of the total sediment transport capacity for each of several T-year return frequency runoff hydrographs. This information is used to obtain an approximate probability distribution for the total sediment transport capacity, and the mean and standard deviation of this distribution are computed.Comparing the results for the catchment in its present state with a future developed state, using a selection of new channel parameters, indicates how to improve the channel to control changes in sedimentation due to development. The analysis procedure provides a basis for estimating a new channel configuration such that the new flow conditions retain, as best as possible, the existing condition sedimentation effects, and hence retain the natural sediment supply and transport trends even though runoff flow rates have changed due to land development within the catchment.The results of Wilson Creek are typical of the several sites examined, see Table 3 below. The T=2, T=5, T=25, and T=100 year values for total sediment transport capacity, in kilotons, are 6.9, 39.4, 61.3, and 96.7 with a mean of 17.1 and standard deviation of 19.3. After development with no change in the channel the respective values increase to: 17.9, 84.6, 128.1, and 258.0 with a mean of 39.1 and standard deviation of 44.3. A new channel can be constructed which will reduce these sediment transport capacity values, after development, to 5.2, 41.0, 62.0, and 124.8 with a mean of 17.4 and standard deviation of 22.0.
Keywords:Sedimentation  probability density function  synthetic study  development
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号