首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling of the nighttime nitrogen and sulfur chemistry in size resolved droplets of an orographic cloud
Authors:Rolf Sander  Jos Lelieveld  Paul J Crutzen
Institution:(1) Max-Planck Institute for Chemistry, Airchemistry Division, Postfach 3060, 55020 Mainz, Germany;(2) Present address: Department of Air Quality, Agricultural University, P.O. Box 8129, 6700 EV Wageningen, the Netherlands
Abstract:A chemistry module has been incorporated into a Lagrangian type model that computes the dynamics and microphysics of an orographical cloud formed in moist air flowing over the summit of Great Dun Fell (GDF) in England. The cloud droplets grow on a maritime aerosol which is assumed to be an external mixture of sea-salt particles and ammonium-sulfate particles. The dry particle radii are in the range 10 nm<r<1 µm. The gas-phase chemical reaction scheme considers reactions of nitrogen compounds that are important at night. The treatment of scavenging of gases into the aqueous phase in the model takes into account the different solubilities and accommodation coefficients. The chemistry in the aqueous phase focusses on the oxidation of S(IV) via different pathways.Sensitivity analyses have been performed to investigate deviations from gas-liquid equilibria according to Henry's law and also to study the influence of iron and of nitrogen compounds on the aqueous-phase oxidation of dissolved SO2. When addressing these questions, special attention has been given to the dependence on the droplet size distribution and on the chemical composition of the cloud condensation nuclei on which the droplets have formed. It was found that the oxidation of S(IV) via a chain reaction of sulfur radicals can be important under conditions where H2O2 is low. However, major uncertainties remain with respect to the interaction of iron with the radical chain. It was shown that mixing of individual cloud droplets, which are not in equilibrium according to Henry's law, can result in a bulk sample in equilibrium with the ambient air. The dependence of the aqueous-phase concentrations on the size of the cloud droplets is discussed for iron, chloride and NO3.
Keywords:model  orographic cloud  sulfur  nitrogen oxides  heterogeneous oxidation  iron catalysis  Henry's law  droplet size spectrum
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号