首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemistry and petrology of Mesozoic-Cenozoic magmatic complexes of the southern framing of the Aldan shield: Geodynamic problems
Authors:A Yu Antonov
Institution:(1) Vinogradov Institute of Geochemistry, Siberian Division, Russian Academy of Sciences, Irkutsk, Russia
Abstract:This paper summarizes the results of long-term geological, petrological, and geochemical investigations of the Mesozoic-Cenozoic complexes of the Stanovoy Range in order to determine the main reasons for their generation and evolution. The analysis of this material showed that the compositionally variable Late Mesozoic igneous complexes of the Stanovoy Range were formed in various depth facies, from abyssal to surficial. The majority of their salic complexes show minor compositional variations, whereas the mafic complexes are more variable, especially in the southeast of the region. The southeastern Stanovoy Range comprises comparable amounts of both subalkaline and low-alkali igneous rocks, whereas the central part is dominated by subalkaline rocks, and the northwestern part contains rocks only of the shoshonite-latite series. This zoning is fundamentally different from that of typical island arcs, which are characterized by the occurrence of volcanic rocks of similar alkalinity in each zone. Extrusive and intrusive rocks with similar alkali and silica contents (and schlieren-like inclusions in the granitoids of the region) were formed from common magmas of corresponding chemical compositions. In addition, the mafic and most of the salic magmas were formed as independent melting products, whereas the magmas of intermediate composition were formed mainly by mixing of chemically contrasting liquids (i.e., salic and basic). It was shown that the available information on the magmatism of the region is best interpreted in terms of the model of mantle diapirism. In particular, mantle diapirs ascended rather slowly during the Mesozoic and occurred over the whole territory of the Stanovoy Range during the Jurassic-Cretaceous stage (J3-K1), when alkaline and subalkaline basalts were formed. During the Early-Late Cretaceous stage, mantle diapirs produced alkali-poor basalts in the central and eastern parts. During the Cenozoic, the diapir ascended rather rapidly but only in a small area in the eastern part of the region forming alkali basalts. In contrast to the Cenozoic, the Earth’s crust was strongly affected by mantle diapirs and related mafic magmas in the Mesozoic. As a result, crustal sequences were reworked by fluids and subsequently yielded tremendous volumes of compositionally corresponding salic magmas, which interacted and mixed with mafic magmas producing the corresponding chemical zoning. The maximum generation of crustal magmas was confined to the axial zones of ascending diapirs, where the highest energy effects took place, whereas the role of autochthonous gneissic granites increased away from the axis at the expense of typical intrusive complexes.
Keywords:magmatism  Mesozoic  Cenozoic  geochemistry  petrology  fluid  diapir  Stanovoy Range
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号