首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Supra‐glacial lakes and ponds can create hotspots of mass loss on debris‐covered glaciers. While much research has been directed at understanding lateral lake expansion, little is known about the rates or processes governing lake deepening. To a large degree, this knowledge gap persists due to sparse observations of lake beds. Here we report on the novel use of ground penetrating radar (GPR) surveys to simultaneously collect supra‐glacial lake bathymetry and bottom composition data from Spillway Lake (surface area of 2.4 × 105 m2; volume of 9.5 × 104 m3), which is located in the terminus region of the Ngozumpa Glacier in the Khumbu region of the Nepal Himalaya. We identified two GPR bottom signals corresponding to two sedimentary facies of (1) sub‐horizontal layered fine sediment drape and (2) coarse blocky diamict. We provide an understanding of the changes in subaqueous debris distribution that occur through stages of lake expansion by combining the GPR results with in situ observations of shoreline deposits matching the interpreted facies. From this, we present an updated conceptual model of supra‐glacial lake evolution, with the addition of data on the evolving debris environment, showing how dominant depositional processes can change as lakes evolve from perched lakes to multi‐basin base‐level lakes and finally onto large moraine‐dammed lakes. Throughout lake evolution, processes such as shoreline steepening, lakebed collapse into voids and conduit interception, subaerial and subaqueous calving and rapid areal expansion alter the spatial distribution and makeup of lakebed debris and sediments forcing a number of positive and negative feedbacks on lake expansion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Climate variability during the Mid‐Late Holocene has influenced the activity of geomorphic processes in the current periglacial belt of the Sierra Nevada. We studied two types of sedimentary records that reveal a synchronous timing for slope instability in this high semi‐arid massif: solifluction landforms and mountain lake sediments. Lithological and sedimentological properties of both records have recorded numerous cycles of different magnitude of slope processes in the massif. Solifluction deposits record seven phases of solifluction activity and soil development during the last 7 ka bp and lake sediments show evidence of eight periods with increased geomorphic activity in the catchments over the last 6 ka bp . Although present‐day climate conditions do not promote active solifluction processes in the Sierra Nevada, colder and wetter periods during the Holocene triggered solifluction and transported coarse‐grained sediments into the lakes. By contrast, warm phases favoured soil formation and spread an incipient vegetation cover over the headwaters of the highest valleys, diminishing the grain size of the particles reaching the lakes. Lake sediments record an aridification trend in the massif intensifying since 4·2 ka bp that has conditioned solifluction activity to shift gradually to higher elevations. During major cooler phases such as the Little Ice Age active solifluction was recorded back down to 2500 m altitude. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
To better understand the linkage between lake area change, permafrost conditions and intra‐annual and inter‐annual variability in climate, we explored the temporal and spatial patterns of lake area changes for a 422 382‐ha study area within Yukon Flats, Alaska using Landsat images of 17 dates between 1984 and 2009. Only closed basin lakes were used in this study. Among the 3529 lakes greater than 1 ha, closed basin lakes accounted for 65% by number and 50% by area. A multiple linear regression model was built to quantify the temporal change in total lake area with consideration of its intra‐annual and inter‐annual variability. The results showed that 80.7% of lake area variability was attributed to intra‐annual and inter‐annual variability in local water balance and mean temperature since snowmelt (interpreted as a proxy for seasonal thaw depth). Another 14.3% was associated with long‐term change. Among 2280 lakes, 350 lakes shrank, and 103 lakes expanded. The lakes with similar change trends formed distinct clusters, so did the lakes with similar short term intra‐annual and inter‐annual variability. By analysing potential factors driving lake area changes including evaporation, precipitation, indicators for regional permafrost change, and flooding, we found that ice‐jam flooding events were the most likely explanation for the observed temporal pattern. In addition to changes in the frequency of ice jam flooding events, the observed changes of individual lakes may be influenced by local variability in permafrost distributions and/or degradation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Potential future changes in lake physical processes (e.g. stratification and freezing) can be assessed through exploring their sensitivity to climate change, and assessing the current vulnerability of different lake types to plausible changes in meteorological drivers. This study quantifies the impacts of climate change and sensitivity of lake physical processes within a large (5100 km2) Precambrian Shield catchment in south‐central Ontario. Historic regional relationships are established between climate drivers, lake morphology, and lake physical changes through generalized linear modelling (GLM), and are used to quantify likely changes in timing of ice phenology and lake stratification across 72 lakes under a range of future climate models and scenarios. In response to projections of increased temperature (ensemble mean of +3.3 °C), both earlier ice‐off and onset of summer stratification were projected, with later ice‐on and fall turnover compared to the baseline. Process sensitivity to climate change varied by lake type; shallower lakes with a smaller volume (less than 15 m deep and less than 0.05 km3) were more sensitive to processes associated with lake heating (stratification onset and ice‐off), and deeper lakes with a larger surface area (greater than 30 m deep and greater than 1000 ha) were more sensitive to processes associated with lake cooling (fall turnover and ice‐on). These results indicate that whereas small lakes are vulnerable to climate warming because of changes that occur in spring and summer, larger lakes are particularly sensitive during the fall. The findings suggest that lake morphology and associated sensitivity should be considered in the development of sustainable lake management strategies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Levees, channels and water storages built on the world's floodplain wetlands control flows for irrigation, flood mitigation and erosion management. Assessing their distribution and hydrological impacts through time and across broad extents is limited by significant costs and technical challenges. We tested the effectiveness of three new semi‐automated geographic information systems and traditional visual interpretation techniques for detecting earthworks. We used commercially or freely available two‐dimensional and three‐dimensional spatial imagery within 19 quadrats in an agricultural floodplain of the Murray–Darling Basin, southeastern Australia. Semi‐automated digital elevation model (DEM) analysis performed best for spatial accuracy (78% of earthworks correctly predicted within 25 m), overall classification accuracy (97.7%) and kappa (0.64), compared with traditional visual interpretation techniques using Landsat TM (52%, 96.3%, 0.39), SPOT (53%, 95.8%, 0.27) and aerial photography (72%, 97.2%, 0.31). DEM analysis also outperformed semi‐automated image segmentation (16%, 93%, 0.29) and integrated analysis (75%, 96.0%, 0.43) that used spectral information. Semi‐automated techniques were slow (DEM analysis: 27 418 s/km2; integrated analysis: 27 737 s/km2; and image segmentation: 1439 s/km2) compared with visual interpretation (Landsat TM: 109 s/km2; SPOT: 166 s/km2; and aerial photography: 276 s/km2); however, processing speed of semi‐automated techniques can be further increased without compromising accuracy. Semi‐automated techniques also offered operational autonomy following model calibration. High quality, cost‐effective earthwork mapping techniques, particularly the semi‐automated techniques in this study, are critical for understanding and managing ecosystem health, flood risk and water security in developed floodplains worldwide and should be implemented by governing institutions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
本文基于505 景 Landsat 卫星影像,通过自动化冰湖边界提取与人工目视解译相结合的方法调查了 2000 和 2020年中国境内冰湖的分布与变化,并结合 1990 年冰湖编目数据,分析中国冰湖变化特征及影响因素。 研究表明,19902020 年中国冰湖面积增加(180.1±0.1) km2,增加了 17.9%。 其中,冰川补给湖面积扩张最显著,为 22.9%,而非冰川补给湖的面积仅扩张 4.9%。 1990 2020 年冰湖面积在较高海拔带呈现增长快速的趋势,其中,在海拔 5500 m 以上冰湖面积扩张最大,达 30.5%。 在区域尺度,非冰川补给湖的变化主要受降水量和蒸发量变化的影响,其中蒸发量变化对非冰川补给湖更为显著;气温升高与冰川普遍退缩则是导致冰川补给湖普遍快速扩张的主要原因。  相似文献   

7.
Glacial lake outburst floods are among the most serious natural hazards in the Himalayas. Such floods are of high scientific and political importance because they exert trans‐boundary impacts on bordering countries. The preparation of an updated inventory of glacial lakes and the analysis of their evolution are an important first step in assessment of hazards from glacial lake outbursts. Here, we report the spatiotemporal developments of the glacial lakes in the Poiqu River basin, a trans‐boundary basin in the Central Himalayas, from 1976 to 2010 based on multi‐temporal Landsat images. Studied glacial lakes are classified as glacier‐fed lakes and non‐glacier‐fed lakes according to their hydrologic connection to glacial watersheds. A total of 119 glacial lakes larger than 0.01 km2 with an overall surface area of 20.22 km2 (±10.8%) were mapped in 2010, with glacier‐fed lakes being predominant in both number (69, 58.0%) and area (16.22 km2, 80.2%). We found that lakes connected to glacial watersheds (glacier‐fed lakes) significantly expanded (122.1%) from 1976 to 2010, whereas lakes not connected to glacial watersheds (non‐glacier‐fed lakes) remained stable (+2.8%) during the same period. This contrast can be attributed to the impact of glaciers. Retreating glaciers not only supply meltwater to lakes but also leave space for them to expand. Compared with other regions of the Hindu Kush Himalayas (HKH), the lake area per glacier area in the Poiqu River basin was the highest. This observation might be attributed to the different climate regimes and glacier status along the HKH. The results presented in this study confirm the significant role of glacier retreat on the evolution of glacial lakes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35‐year period. Shoreline erosion rates due to permafrost degradation ranged from < 0·2 m/year in very shallow lakes (0·4 m) up to 1·8 m/year in the deepest lakes (2·6 m). This pattern of thermokarst expansion masked detection of lake hydrologic change using remotely sensed imagery except for the shallowest lakes with stable shorelines. Changes in the surface area of these shallow lakes tracked interannual variation in precipitation minus evaporation (P ? EL) with periods of full and nearly dry basins. Shorter‐term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long‐term record for only shallow lakes. Our analysis suggests that grounded‐ice lakes are ice‐free on average 37 days longer than floating‐ice lakes resulting in a longer period of evaporative loss and more frequent negative P ? EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Hydrological processes of lakes in the Tibetan Plateau are an important indicator of climate change. Due to the high elevation, inaccessibility and limited availability of historical observations, water budget evaluation of typical lake basins has been inadequate. In this study, stable isotopes are used to trace the multiple water sources contributing to two adjacent lakes on the north slope of the Himalayas, Gongmo‐tso and Drem‐tso. The two lakes have nearly the same elevation, lake area and climatic condition. However, the isotopic composition of the two lakes presents significant differences. Qualitative observations attribute the differences to hydrological discrepancies: Gongmo‐tso is a through‐flow lake, whereas Drem‐tso is a terminal lake. Quantitative analyses, including water and isotope mass balance modelling, clarify the fluxes and isotopic compositions among the various hydrological elements. The isotopic composition of input water, calculated as the summation of rainfall and upstream runoff, is estimated using the local meteoric water line (LMWL) combined with the time series of lake water isotope values. The isotopic composition of evaporation is calculated with a linear resistance model using local meteorological data. The results show that Drem‐tso is a closed lake in a hydrological steady state with relatively more enriched lake water isotope values resulting mainly from evaporation. In contrast, through‐flow accounts for more than 88% of the water input into Gongmo‐tso. The large amount of upstream runoff with lower isotopic composition and enrichment due to evaporation are the major contributions to the observed lake water isotope values. Isotopic modelling of the two neighbouring lakes is effective for isotopic and hydrological research in this region with limited in situ observations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Lake eutrophication is a large and growing problem in many parts of the world, commonly due to anthropogenic sources of nutrients. Improved quantification of nutrient inputs is required to address this problem, including better determination of exchanges between groundwater and lakes. This first of a two‐part review provides a brief history of the evolution of the study of groundwater exchange with lakes, followed by a listing of the most commonly used methods for quantifying this exchange. Rates of exchange between lakes and groundwater compiled from the literature are statistically summarized for both exfiltration (flow from groundwater to a lake) and infiltration (flow from a lake to groundwater), including per cent contribution of groundwater to lake‐water budgets. Reported rates of exchange between groundwater and lakes span more than five orders of magnitude. Median exfiltration is 0.74 cm/day, and median infiltration is 0.60 cm/day. Exfiltration ranges from near 0% to 94% of input terms in lake‐water budgets, and infiltration ranges from near 0% to 91% of loss terms. Median values for exfiltration and infiltration as percentages of input and loss terms of lake‐water budgets are 25% and 35%, respectively. Quantification of the groundwater term is somewhat method dependent, indicating that calculating the groundwater component with multiple methods can provide a better understanding of the accuracy of estimates. The importance of exfiltration to a lake budget ranges widely for lakes less than about 100 ha in area but generally decreases with increasing lake area, particularly for lakes that exceed 100 ha in area. No such relation is evident for lakes where infiltration occurs, perhaps because of the smaller sample size. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
For lakes in desert hinterlands that are not recharged by river runoff, sediment input solely comes from wind transport. While the processes of sediment transport and deposition in these lakes differ significantly from those with river discharge, the spatial distribution of sediment grain size in these groundwater‐recharged lakes remains largely unknown. Moreover, whether the grain size distribution in these lake sediments can be used as a proxy in the study of past climatic change and environmental evolution studies is unclear. In this study, five lakes with a range of surface areas that had no runoff recharge were selected from the hinterland of the Badain Jaran Desert of north‐western China, and a total of 108 samples of lake surface sediments were collected to examine the spatial distribution of grain size. Moreover, an end‐member‐modeling algorithm was used to calculate end members from all grain size measurements. Our results showed that both the median and mean grain sizes in the lake sediments decreased from the nearshore to the offshore, deep‐water zone. However, the lowest median and mean grain sizes were not found in the center of the lakes, in contrast to lakes recharged by surface runoff. The median grain size of sediment in the lake center was negatively correlated with lake level, and thus could help reveal lake evolution at low resolutions. Moreover, EM1 and EM2 were interpreted as wind transported sediment, and sediment perturbed by lake waves after wind transport, respectively. The modal grain size of EM1 varied slightly between lakes, while changes in the modal grain size of EM2 were related to lake area. Given the positive relationship found between EM2 content and lake level, changes in the EM2 content (%) can serve as a rough indicator of lake level fluctuations at low temporal resolutions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
The influence of urbanization on the temperature of small streams is widely recognized, but these effects are confounded by the great natural variety of their contributing watersheds. To evaluate the relative importance of local‐scale and watershed‐scale factors on summer temperatures in urban streams, hundreds of near‐instantaneous temperature measurements throughout the central Puget Lowland, western Washington State, were collected during a single 2‐h period in August in each of the years 1998–2001. Stream temperatures ranged from 8.9 to 27.5 °C, averaging 15.4 °C. Pairwise correlation coefficients between stream temperature and four watershed variables (total watershed area and the watershed percentages of urban development, upstream lakes, and permeable glacial outwash soils as an indicator of groundwater exchange) were uniformly very low. Akaike's information criterion was applied to determine the best‐supported sets of watershed‐scale predictor variables for explaining the variability of stream temperatures. For the full four‐year dataset, the only well‐supported model was the global model (using all watershed variables); for the most voluminous single‐year (1999) data, Akaike's information criterion showed greatest support for per cent outwash (Akaike weight of 0.44), followed closely by per cent urban development + per cent outwash, per cent lake area only, and the global model. Upstream lakes resulted in downstream warming of up to 3 °C; variability in riparian shading imposed a similar temperature range. Watershed urbanization itself is not the most important determining factor for summer temperatures in this region; even the long‐recognized effects of riparian shading can be no more influential than those imposed by other local‐scale and watershed‐scale factors. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
On 3 September 1998, a glacial lake outburst flood (GLOF) that originated from Tam Pokhari occurred in the Hinku valley of the eastern Nepal Himalaya. This study analyses the lake's geomorphic and hydrologic conditions prior to the outburst, and evaluates the conditions that could contribute to a future flood through photogrammetric techniques. We processed high‐resolution Corona KH‐4A (2.7 m) and ALOS PRISM (2.5 m) stereo‐images taken before and after the GLOF event, and produced detailed topographic maps (2‐m contour interval) and DEMs (5 m × 5 m). We (re‐) constructed lake water surfaces before (4410 ± 5 m) and after (4356 ± 5 m) the outburst, and reliably estimated the lake water surface lowering (54 ± 5 m) and the water volume released (19.5 ± 2.2 × 106 m3) from the lake, showing good agreement with the results obtained from ground‐based measurements. The most relevant conditions that may have influenced the catastrophic drainage of Tam Pokhari in 1998 include the presence of: (i) a narrow (75 ± 6 m), steep (up to 50°) and high (120 ± 5 m) moraine dam; (ii) high lake level (8 ± 5 m of freeboard) and (iii) a steep overhanging glacier (>40°). The lake outburst substantially altered the immediate area, creating a low and wide (>500 m) outwash plain below the lake, a wide lake outlet channel (~50 m) and a gentle channel slope (~3–5°). Our new data suggest that the likelihood of a future lake outburst is low. Our results demonstrate that the datasets produced by photogrammetric techniques provide an excellent representation of micro‐landform features on moraine dams, lake water surfaces and the changes in both over time, thereby allowing highly accurate pre‐ and post‐GLOF (volumetric) change analysis of glacial lakes. Furthermore, it enables precise measurement of several predictive variables of GLOFs that can be useful for identifying potentially dangerous glacial lakes or prioritizing them for detailed field investigations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Glacier retreat results in the formation and expansion, and sometimes outburst, of moraine‐dammed lakes worldwide. Sudden outburst floods from such lakes have caused enormous damage to settlements and infrastructure located downstream. Such lakes located in the Himalayan region are highly prone to outburst floods due to climatic conditions and geotectonic settings. In this study, multi‐temporal Landsat images from 2002–2014, digital elevation models (DEMs), geomorphic analysis and modelling were used to assess the changes in glacial lakes and the outburst susceptibility of moraine‐dammed lakes in the Chandra–Bhaga basin of the north‐western Indian Himalaya. An inventory of lakes was developed using satellite data, thematic maps and ground‐based investigations for the Chandra–Bhaga basin. The total area of all glacial lakes (size >5000 m2) increased by 47% from 2002 to 2014, with a pronounced increase of 57% for moraine‐dammed lakes. Sixteen moraine‐dammed lakes were identified and assessed for outburst susceptibility using the analytic hierarchy process (AHP). Forty‐one reported glacial lake outburst flood (GLOF) events from moraine‐dammed lakes in Himalayan regions were analysed, culminating in the identification of 11 critical factors for assessing outburst susceptibility using the AHP, including those related to the lake area and change, surrounding terrain characteristics, dam geometry, regional seismicity and rainfall history. The past three GLOF events in the Himalayan region were used to validate the method and to classify moraine‐dammed lakes as having very high, high, medium or low outburst susceptibility. Eight lakes classified as very high and high outburst susceptibility should be further investigated in detail. The proposed AHP‐based approach is suitable for first‐order identification of critical lakes for prioritising future detailed investigation and monitoring of moraine‐dammed glacial lakes in the Himalayan region. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
This paper sheds light on the hydrodynamic conditions of transport and sedimentary effects of wind‐induced water currents produced during strong windstorms in low gradient systems. Repeated field surveys were conducted in a playa lake in central Spain to determine the impacts of major winter storms on the bed form morphology in real time. The succession of storms that passed through the area from mid‐December 2013 to early February 2014 left behind a variety of sedimentary structures: mainly ripple marks showing complex patterns and erosional structures. The latter include obstacle scours, grooves and other tool marks. In situ observations revealed that strong storm events in almost flat, extremely shallow lakes (less than 5 cm) have enough hydraulic energy to erode and remove high volumes of sediments and may also lead to large stones sliding across the bed, thus creating long grooves. Sole marks found in ancient continental successions have been typically attributed to fluvial conditions. We suggest that shallow lake basins should not be discounted when storm‐generated structures are preserved in ancient rocks. The identification of such sedimentary structures provides valuable information for reconstructing hydrodynamic conditions and paleoclimatic conditions in semi‐arid environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Water source and lake landscape position can strongly influence the physico‐chemical characteristics of flowing waters over space and time. We examined the physico‐chemical heterogeneity in surface waters of an alpine stream‐lake network (>2600 m a.s.l.) in Switzerland. The catchment comprises two basins interspersed with 26 cirque lakes. The larger lakes in each basin are interconnected by streams that converge in a lowermost lake with an outlet stream. The north basin is primarily fed by precipitation and groundwater, whereas the south basin is fed mostly by glacial melt from rock glaciers. Surface flow of the entire channel network contracted by ~60% in early autumn, when snowmelt runoff ceased and cold temperatures reduced glacial outputs, particularly in the south basin. Average water temperatures were ~4 °C cooler in the south basin, and temperatures increased by about 4–6 °C along the longitudinal gradient within each basin. Although overall water conductivity was low (<27 µS cm?1) because of bedrock geology (ortho‐gneiss), the south basin had two times higher conductivity values than the north basin. Phosphate‐phosphorus levels were below analytical detection limits, but particulate phosphorus was about four times higher in the north basin (seasonal average: 9 µg l?1) than in the south basin (seasonal average: 2 µg l?1). Dissolved nitrogen constituents were around two times higher in the south basin than in the north basin, with highest values averaging > 300 µg l?1 (nitrite + nitrate‐nitrogen), whereas particulate nitrogen was approximately nine times greater in the north basin (seasonal average: 97 µg l?1) than in the south basin (seasonal average: 12 µg l?1). Total inorganic carbon was low (usually <0·8 mg l?1), silica was sufficient for algal growth, and particulate organic carbon was 4·5 times higher in the north basin (average: 0·9 mg l?1) than in the south basin (average: 0·2 mg l?1). North‐basin streams showed strong seasonality in turbidity, particulate‐nitrogen and ‐phosphorus, and particulate organic carbon, whereas strong seasonality in south‐basin streams was observed in conductivity and dissolved nitrogen. Lake position influenced the seasonal dynamics in stream temperatures and nutrients, particularly in the groundwater/precipitation‐fed north‐basin network. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Data collected in 4 years of field observations were used in conjunction with continuous simulation models to study, at the small‐basin scale, the water balance of a closed catchment‐lake system in a semi‐arid Mediterranean environment. The open water evaporation was computed with the Penman equation, using the data set collected in the middle of the lake. The surface runoff was partly measured at the main tributary and partly simulated using a distributed, catchment, hydrological model, calibrated with the observed discharge. The simplified structure of the developed modelling mainly concerns soil moisture dynamics and bedrock hydraulics, whereas the flow components are physically based. The calibration produced high efficiency coefficients and showed that surface runoff is greatly affected by soil water percolation into fractured bedrock. The bedrock reduces the storm‐flow peaks and the interflow and has important multi‐year effects on the annual runoff coefficients. The net subsurface outflow from the lake was calculated as the residual of the lake water balance. It was almost constant in the dry seasons and increased in the wet seasons, because of the moistening of the unsaturated soil. During the years of observation, rainfall 30% higher than average caused abundant runoff and a continuous rise in the lake water levels. The analysis allows to predict that, in years with lower than the average rainfall, runoff will be drastically reduced and will not be able to compensate for negative balance between precipitation and lake evaporation. Such highly unsteady situations, with great fluctuations in lake levels, are typical of closed catchment‐lake systems in the semi‐arid Mediterranean environment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Surface water oxygen and hydrogen isotopic values are commonly used as proxies of precipitation isotopic values to track modern hydrologic processes while proxies of water isotopic values preserved in lake and river sediments are used for paleoclimate and paleoaltimetry studies. Previous work has been able to explain variability in USA river‐water and meteoric‐precipitation oxygen isotope variability with geographic variables. These studies show that in the western United States, river‐water isotopic values are depleted relative to precipitation values. In comparison, the controls on lake‐water isotopic values are not well constrained. It has been documented that western United States lake‐water input values, unlike river water, reflect the monthly weighted mean isotopic value of precipitation. To understand the differing controls on lake‐ and river‐water isotopic values in the western United States, we examine the seasonal distribution of precipitation, evaporation and snowmelt across a range of seasonality regimes. We generate new predictive equations based on easily measured factors for western United States lake‐water, which are able to explain 69–63% of the variability in lake‐water hydrogen and oxygen isotopic values. In addition to the geographic factors that can explain river and precipitation values, lake‐water isotopic values need factors related to local hydrologic and climatic characteristics to explain variability. Study results suggest that the spring snowmelt runs off the landscape via rivers and streams, depleting river and stream‐water isotopic values. By contrast, lakes receive seasonal contributions of precipitation in proportion to the seasonal fraction of total annual precipitation within their watershed. Climate change may alter the ratio of snow to rain fall, affecting water resource partitioning between rivers and lakes and by implication of groundwater. Paleolimnological studies must account for the multiple drivers of water isotopic values; likewise, studies based on the isotopic composition of fossil material need to distinguish between species that are associated with rivers versus lakes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Özgür Kişi 《水文研究》2009,23(14):2081-2092
This paper proposes the application of a conjunction model (neuro‐wavelet) for forecasting monthly lake levels. The neuro‐wavelet (NW) conjunction model is improved combining two methods, discrete wavelet transform and artificial neural networks. The application of the methodology is presented for the Lake Van, which is the biggest lake in Turkey, and Lake Egirdir. The accuracy of the NW model is investigated for 1‐ and 6‐month‐ahead lake level forecasting. The root mean square errors, mean absolute relative errors and determination coefficient statistics are used for evaluating the accuracy of NW models. The results of the proposed models are compared with those of the neural networks. In the 1‐month‐ahead lake level forecasting, the NW conjunction model reduced the root mean square errors and mean absolute relative errors by 87–34% and 86–31% for the Van and Egirdir lakes, respectively. In the 6‐month‐ahead lake level forecasting, the NW conjunction model reduced the root mean square errors and mean absolute relative errors by 34–48% and 30‐46% for the Van and Egirdir lakes, respectively. The comparison results indicate that the suggested model could significantly increase the short‐ and long‐term forecast accuracy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Lake ice supports a range of socio‐economic and cultural activities including transportation and winter recreational actives. The influence of weather patterns on ice‐cover dynamics of temperate lakes requires further understanding for determining how changes in ice composition will impact ice safety and the range of ecosystem services provided by seasonal ice cover. An investigation of lake ice formation and decay for three lakes in Central Ontario, Canada, took place over the course of two winters, 2015–2016 and 2016–2017, through the use of outdoor digital cameras, a Shallow Water Ice Profiler (upward‐looking sonar), and weekly field measurements. Temperature fluctuations across 0°C promoted substantial early season white ice growth, with lesser amounts of black ice forming later in the season. Ice thickening processes observed were mainly through meltwater, or midwinter rain, refreezing on the ice surface. Snow redistribution was limited, with frequent melt events limiting the duration of fresh snow on the ice, leading to a fairly uniform distribution of white ice across the lakes in 2015–2016 (standard deviations week to week ranging from 3 to 5 cm), but with slightly more variability in 2016–2017 when more snow accumulated over the season (5 to 11 cm). White ice dominated the end‐of‐season ice composition for both seasons representing more than 70% of the total ice thickness, which is a stark contrast to Arctic lake ice that is composed mainly of black ice. This research has provided the first detailed lake ice processes and conditions from medium‐sized north‐temperate lakes and provided important information on temperate region lake ice characteristics that will enhance the understanding of the response of temperate lake ice to climate and provide insight on potential changes to more northern ice regimes under continued climate warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号