首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
施晓晖  徐祥德 《地球物理学报》2012,55(10):3230-3239
针对2011年12月初北京及华北持续近一周的严重大雾天气这一热点事件,从城市群大雾过程气溶胶区域影响的视角,基于"973"项目"北京及周边地区大气-水-土环境污染机理与调控原理"的研究工作,就北京及周边地区大雾天气与大气气溶胶区域影响的关系等方面进行了讨论.研究表明,北京城市大雾前低空SO2和NO2浓度存在"积聚"与"突增"现象.北京及周边地区冬季雾日数和气溶胶光学厚度则呈正相关,并具有"同位相"的年际变化趋势.研究同时发现北京及其南部周边的冬季气溶胶高值区呈南北向带状分布,其与北京周边居民户数高值区有所吻合,反映了冬季北京城市气溶胶颗粒物的远距离影响源区及大尺度输送效应.统计分析指出,冬季北京气溶胶颗粒物PM10、PM2.5主要影响成分是SO2和NOX,且有关研究也表明,电厂、采暖和工业面源是SO2的三大本地排放源,而机动车、电厂、工业为NOX的三大本地排放源,上述大气PM10、PM2.5主成分污染源亦与雾水样本化学分析结果相吻合,即冬季由于燃煤在生活能源中的比例较大,北京雾水中硫元素和碳元素的含量都较高.因此,北京冬季大雾不仅与北京城区气溶胶及其污染排放影响存在相关关系,而且与北京周边天津、河北、山东等地气溶胶及大气污染物的远距离输送和气溶胶区域影响效应有着重要的联系.因此,北京雾霾天气及相关大气污染的治理工作首先要着眼于局地污染物的减排,但同时如何做好区域大气污染的协同治理也是不容忽视的问题.  相似文献   

2.
The spatial structure and multi-scale feature of the atmospheric pollution influence domain of Beijing and its peripheral areas (a rapidly developed city agglomeration) is dissected and analyzed in this paper on the basis of the atmospheric pollution dynamic-chemical process observation data of the urban building ensemble boundary layer of the Beijing City Air Pollution Observation Experiment (BECAPEX) in winter (February) and summer (August) 2003, and relevant meteorological elements and satellite retrieval aerosol optical depth (AOD), etc. comprehensive data with the dynamic-statistical integrated analysis of "point-surface" spatial structure. Results show that there existed significant difference in the contribution of winter/summer different pollution emission sources to the component character of atmospheric pollution, and the principal component analysis (PCA) results of statistical model also indicate that SO2 and NOX dominated in the component structure of winter aerosol particle; instead, CO and NOX dominated in summer. Surface layer atmospheric dynamic and thermal structures and various pollutant species at the upper boundary of building ensembles at urban different observational sites of Beijing in winter and summer showed an "in-phase" variation and its spatial scale feature of "influence domain". The power spectrum analysis (PSA) shows that the period spectrum of winter/summer particle concentration accorded with those of atmospheric wind field: the longer period was dominative in winter, but the shorter period in summer, revealing the impact of the seasonal scale feature of winter/summer atmospheric general circulation on the period of atmospheric pollution variations. It is found that from analyzing urban area thermal heterogeneity that the multiscale effect of Beijing region urban heat island (UHI) was associated with the heterogeneous expansion of tall buildings area. In urban atmospheric dynamical and thermal characteristic spatial structures, the turbulent scale feature of the urban boundary layer (UBL) of architectural complexes had important impact on the multi-scale feature of urban atmospheric pollution. The comprehensive analyses of the variational analysis field of Moderate Resolution Imaging Spectroradiometer (MODIS) AOD-surface PM10 under the condition of clear sky and the correlation resultant wind vector field for pollution source-tracing suggest that the emission sources for winter Beijing atmospheric pollution aerosols particle might be remotely traced to the south peripheral greater-scale spatial range of Hebei, Shandong, Tianjin, etc., and the spatial distribution of the high value area of AOD was associated with that of the high value area of resident family number (heating surface source). The backward trajectory feature of winter/ summer air particles exhibits analogous multi-scale feature, and depicts the difference in the scale feature of the pollution sources spatial distribution in different seasons. The peripheral source trajectory paths of urban atmospheric pollution (UAP) mainly come from the fixed industrial surface source or heating surface source in the outskirt of Beijing, and the diffusion and transport distance of peripheral sources in winter is larger than one in summer. The above conclusions depict the multi-scale spatial influence domain and seasonal features caused by UAP source influence and atmospheric dynamical structure. The high value area of the winter Total Ozone Mapping Spectrometer (TOMS) AOD lay in the Beijing region and its south peripheral area, an S-N zonal pattern, which reflects the dynamical effect of peripheral topographic pattern on the diffusion of regional scale atmospheric pollution sources. Study suggests that the extent of winter atmospheric pollution within the "valley" megarelief in Beijing and periphery was close related with the pollution emission sources of the south peripheral area; and the significant "anti-phase" variation feature of winter AOD and sunshine duration in Beijing and its peripheral areas, and regional scale correlation of low cloud cover, fog days, and aerosols reflects the local climatic effect of aerosol influence in this region. Besides, analysis of the impacts of atmospheric dry/wet deposition distributions within a valley-scale on the regional water body of Miyun reservoir also reveals the possible influence of the multi-scale spatial structure of summer water, soil and atmospheric pollution sources on the water quality of Miyun reservoir.  相似文献   

3.
The comprehensive impact of atmospheric dry deposition and wet deposition and the pollution sources of farmlands, mining areas, and towns along the Baihe River on the water quality of Miyun reservoir is investigated from the angle of the complex sources of air-soil-water pollution processes, in the context of the 1990-2001 precipitation chemical data at Shangdianzi station--a WMO regional background air pollution monitoring station 15 km far from the Miyun reservoir, in conjunction with the atmospheric dry deposition and wet deposition data of the 2002-2003 Beijing City Air Pollution Observation Field Experiment (BECAPEX). Analysis results suggest that the major ions in precipitation in the Miyun reservoir region in this period were SO, NO, NH and Ca2+; wet acid deposition quantity of Miyun reservoir in the summer half year (April to September) was greater than the quantity in the winter half year (October to March), and the annual wet acid deposition in the reservoir exhibited a rising trend with the mean 1038.45 t, the maximum 1766.31 t occurred in 1996, and the minimum 604.02 t in 1994; the long-term averaged pH of atmospheric precipitation in the Miyun reservoir region was 5.20, i.e. weakly acidic, and the interannual variation of pH values displayed a falling trend. pH values of water body at various depths in the Miyun reservoir were all greater than 7.0, but they exhibited vertical and horizontal nonhomogeneity, and at the same region pH decreased vertically with depth; the 2002 and 2003 annual dustfalls in the Miyun reservoir were 13513.08 t and 3577.64 t, respectively, and the spring dustfall was the number one in a year, accounting for the 61.91% and 44.56% of the annual totals of 2002 and 2003, respectively. Because the atmospheric dry deposition and wet depositions contain multiple types heavy metal elements and harmful elements, they to some extent exacerbated the eutrophication, acidification and potential heavy metal pollution of the reservoir water. The above comprehensive analysis results reveal the complex source characters of the air-soil-water pollution process and the multi-sphere interaction effect. Besides, summer (rainy season) is a season when local soil pollutants enter the water system of reservoir after being washed out by torrential rain or heavy precipitation, which starts the air-soil- water chaining pollution processes, and results in the water pollution of rivers and reservoirs. It is found from the statistical analysis in this paper that the water pollution of Miyun reservoir was correlated with the rain wash-out and confluent flow in the peripheral and upstream local region of the reservoir, and the pollutant concentration of the reservoir water was significantly correlated with the upstream local region precipitation. Those correlation characters reveal the effect of the air-soil-water multi-spheric interaction of reservoir water pollution process. This paper presents the point of view of the complex source analysis of reservoir water pollution and a technical approach for tracing the spatial distribution of the upstream pollution source of the water systems of reservoir.  相似文献   

4.
Based on analysis of the air pollution observational data at 8 observation sites in Beijing including outer suburbs during the period from September 2004 to March 2005, this paper reveals synchronal and in-phase characteristics in the spatial and temporal variation of air pollutants on a city-proper scale at deferent sites; describes seasonal differences of the pollutant emission influence between the heating and non-heating periods, also significantly local differences of the pollutant emission influence between the urban district and outer suburbs, i.e. the spatial and temporal distribution of air pollutant is closely related with that of the pollutant emission intensity. This study shows that due to complexity of the spatial and temporal distribution of pollution emission sources, the new generation Community Multi-scale Air Quality (CMAQ) model developed by the EPA of USA produced forecasts, as other models did, with a systematic error of significantly lower than observations, albeit the model has better capability than previous models had in predicting the spatial distribution and variation tendency of multi-sort pollutants. The reason might be that the CMAQ adopts average amount of pollutant emission inventory, so that the model is difficult to objectively and finely describe the distribution and variation of pollution emission sources intensity on different spatial and temporal scales in the areas, in which the pollution is to be forecast. In order to correct the systematic prediction error resulting from the average pollutant emission inventory in CMAQ, this study proposes a new way of combining dynamics and statistics and establishes a statistically correcting model CMAQ-MOS for forecasts of regional air quality by utilizing the relationship of CMAQ outputs with corresponding observations, and tests the forecast capability. The investigation of experiments presents that CMAQ-MOS reduces the systematic errors of CMAQ because of the uncertainty of pollution emission inventory and improves the forecast level of air quality. Also this work employed a way of combining point and area forecasting, i.e. taking the products of CMAQ for a center site to forecast air pollution for other sites in vicinity with the scheme of model products "reanalysis" and average over the "area".  相似文献   

5.
The direct correlation between NASA MODIS aerosol optical depth (AOD) products and the air pollution index (API) in Beijing was found relatively low based on the long-term comparison analysis. The correlation improved to some extent after taking account of the seasonal variation of scale height and the vertical distribution of aerosols. The correlation coefficient further improved significantly after considering the influencing factor of Relative Humidity (RH). This study concluded that satellite remote-sensing could serve as an efficient tool for monitoring the spatial distribution of particulate pollutants on the ground-level, as long as corrections have been made in the two aforementioned processes. Taking advantage of the MODIS information, we analyzed a pollution episode occurring in October 2004 in Beijing. It indicated that satellite remote-sensing could describe the formation process of the ground-level pollution episode in detail, and showed that regional transport and the topography were crucial factors to air quality in Beijing. The annual averaged distribution in the urban area of Beijing and its surroundings could be also obtained from the high-resolution retrieval results, implicating that high-resolution satellite remote-sensing might be potential in monitoring the source distribution of particulate pollutants.  相似文献   

6.
The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of the meteorological observation tower of 325 m at Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP CAS tower hereafter) on 10―26 August, 2003, as well as the daily mean mass concentration data of PM2.5 and PM10 and the continuous data of CO and NO2 at 8, 100 (low layer), 200 (middle layer), and 320 m (high layer) heights, in combination with the same period meteorological field observation data of the meteorological tower. The vertical distributions of aerosols observed on IAP CAS tower in Beijing can be roughly divided into two patterns: gradually and rapidly decreasing patterns, I.e. The vertical distribution of aerosols in calm weather or on pollution day belongs to the gradually decreasing pattern, while one on clean day or weak cold air day belongs to the rapidly decreasing pattern. The vertical distributive characters of aerosols were closely related with the dynamical/thermal structure and turbulence character of the atmosphere boundary layer. On the clean day, the low layer PM2.5 and PM10 concentrations were close to those at 8 m height, while the concentrations rapidly decreased at the high layer, and their values were only one half of those at 8 m, especially, the concentration of PM2.5 dropped even more. On the clean day, there existed stronger turbulence below 150 m, aerosols were well mixed, but blocked by the more stronger inversion layer aloft, and meanwhile, at various heights, especially in the high layer, the horizontal wind speed was larger, resulting in the rapid decrease of aerosol concentration, I.e. Resulting in the obvious vertical difference of aerosol concentrations between the low and high layers. On the pollution day, the concentrations of PM2.5 and PM10 at the low, middle, and high layers dropped successively by, on average, about 10% for each layer in comparison with those at 8 m height. On pollution days, in company with the low wind speed, there existed two shallow inversion layers in the boundary layer, but aerosols might be, to some extent, mixed below the inversion layer, therefore, on the pollution day the concentrations of PM2.5 and PM10 dropped with height slowly; and the observational results also show that the concentrations at 320 m height were obviously high under SW and SE winds, but at other heights, the concentrations were not correlated with wind directions. The computational results of footprint analysis suggest that this was due to the fact that the 320 m height was impacted by the pollutants transfer of southerly flow from the southern peripheral heavier polluted areas, such as Baoding, and Shijiazhuang of Hebei Province, Tianjin, and Shandong Province, etc., while the low layer was only affected by Beijing's local pollution source. The computational results of power spectra and periods preliminarily reveal that under the condition of calm weather, the periods of PM10 concentration at various heights of the tower were on the order of minutes, while in cases of larger wind speed, the concentrations of PM2.5 and PM10 at 320 m height not only had the short periods of minute-order, but also the longer periods of hour order. Consistent with the conclusion previously drawn by Ding et al., that air pollutants at different heights and at different sites in Beijing had the character of "in-phase" variation, was also observed for the diurnal variation and mean diurnal variation of PM2.5 and PM10 at various heights of the tower in this experiment, again confirming the "in-phase" temporal/spatial distributive character of air pollutants in the urban canopy of Beijing. The gentle double-peak character of the mean diurnal variation of PM2.5 and PM10 was closely related with the evident/similar diurnal variation of turbulent momentum fluxes, sensible heat fluxes, and turbulent kinetic energy at various heights in the urban canopy. Besides, under the condition of calm weather, the concentration of PM2.5 and PM10 declined with height slowly, it was 90% of 8 m concentration at the low layer, a little lesser than 90% at the middle layer, and 80% at the high layer, respectively. Under the condition of weak cold air weather, the concentration remarkably dropped with height, it was 70% of 8 m concentration at the low layer, and 20%―30% at the middle and high layers, especially the concentration of PM2.5 was even lower.  相似文献   

7.
In January 2013,a long-lasting episode of severe haze occurred in central and eastern China,and it attracted attention from all sectors of society.The process and evolution of haze pollution episodes were observed by the"Forming Mechanism and Control Strategies of Haze in China"group using an intensive aerosol and trace gases campaign that simultaneously obtained data at 11 ground-based observing sites in the CARE-China network.The characteristics and formation mechanism of haze pollution episodes were discussed.Five haze pollution episodes were identified in the Beijing-Tianjin-Hebei(Jing-Jin-Ji)area;the two most severe episodes occurred during 9–15 January and 25–31 January.During these two haze pollution episodes,the maximum hourly PM2.5mass concentrations in Beijing were 680 and 530μg m 3,respectively.The process and evolution of haze pollution episodes in other major cities in the Jing-Jin-Ji area,such as Shijiazhuang and Tianjin were almost the same as those observed in Beijing.The external cause of the severe haze episodes was the unusual atmospheric circulation,the depression of strong cold air activities and the very unfavorable dispersion due to geographical and meteorological conditions.However,the internal cause was the quick secondary transformation of primary gaseous pollutants to secondary aerosols,which contributed to the"explosive growth"and"sustained growth"of PM2.5.Particularly,the abnormally high amount of nitric oxide(NOx)in the haze episodes,produced by fossil fuel combustion and vehicle emissions,played a direct or indirect role in the quick secondary transformation of coal-burning sulphur dioxide(SO2)to sulphate aerosols.Furthermore,gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of fine particles,which can change the particle’s size and chemical composition.Consequently,the proportion of secondary inorganic ions,such as sulphate and nitrate,gradually increased,which enhances particle hygroscopicity and thereby accelerating formation of the haze pollution.  相似文献   

8.
The breach in the dam of a tailing pond in the processing plant of a gold mine in Baia Mare (NW Romania) in January 2000 lead to an ecological disaster in the rivers Szamos and Tisza. It was mainly caused by the released slurries containing cyanides and heavy metals. The investigation of surface sediment samples and depth profiles of the years 2000 and 2001 documented the pollution of the rivers Szamos and Tisza on Hungarian territory. In the Szamos and large areas of the Tisza floodplains a significant enrichment with the heavy metals Pb, Cd, Cu, and Zn is existent. The identification of the binding forms with sequential extraction showed that Cd and Zn exist in an easily available form. Therefore the remobilization is possible and an environmental hazard in the downstream areas must be considered. The anthropogenically caused portions of heavy metal concentrations decrease considerably with increasing distance to the mining region. The comparison of the concentrations of heavy metals in both years shows that the pollution is not only caused by the accident in January 2000. The increase of concentrations is based on the permanent input of pollutants into the rivers. The pollution is mainly caused by the erosion of exposed tailing dumps and the poor maintenance of the treatment plants.  相似文献   

9.
By utilizing the Atmospheric Boundary Layer (ABL) observational data made available from the project "973" under the auspices of the Ministry of Science and Technology of the People's Republic of China - entitled the Beijing City Air Pollution Observation Field Experiment (BECAPEX), including the measurements by a wind profiler, captive airships, tower-based boundary layer wind and temperature gradient observational instruments (ultrasonic anemometers and electronic thermometers), air composition samplers, conventional upper-air, surface and Automatic Weather Stations (AWS) observations, this paper herewith analyzes, in a comprehensive manner, the occurrence of a heavy fog event over Beijing in February 2001, including its formation, development, persistence, dynamic and thermodynamic features as well as evolving stratification structures within the boundary layer at different stages. The results suggested: (i) as a typical case of urban heavy fog, before the fog onset over Beijing, a temperature inversion existed in the lower atmosphere, the smokes and the pollutants like SO2 and NO2 had been accumulated at a lower level. Proceeding the fog event, with the increase of SO2 and NO2 concentrations, condensability increased sharply. On the contrary, during the fog process, with increasing condensability, SO2 and NO2 concentrations decreased. This indicated that, acting as condensation nucleus, these accumulated pollutants were playing a key role in catalyzing the fog condensation. (ii) By analyzing mean gradient-, pulsation- and turbulence-distribution patterns derived from the wind measurements taken by the aforementioned tower-based instruments, they all indicated that about 10 hours before the fog onset, a signal foretelling potential strong disturbances in the lower boundary layer was detected, and a significant rise of both mean and disturbance kinetic energies was observed, revealing that the low-level wind shear was strengthened before the fog onset, consequently creating a favorable condition for the outbreak of turbulences. This strong signal seemed to be very meaningful in monitoring and predicting fog occurrence and its development. (iii) Once the fog was in shape, its condensation feedback effects tended to lift the height of temperature inversion layer within the mid and upper levels of the lower atmosphere, which in return determined the fog persistence and restructuring process.  相似文献   

10.
The number of airborne pollution accidents is second only to that of water-borne pollution accidents, in recorded environmental disasters. Acute casualties and public health costs have prompted many airborne pollution risk analyses. To date, few assessment methods have been carried out at regional-scale to quantify acute airborne pollution risk. Herein, a Hybrid Simulation and Risk Analysis approach, involving a systematic combination of simulation, risk ranking, and standardized analysis, is proposed at regional scale. Gaussian and heavy-gas models are utilized in the simulation process, and acute exposure limits preferentially adopted in the risk analysis. The case study shows that 34 of 243 townships in Zhangjiakou City of north China, one of the twin cities selected to host the 2022 Winter Olympics, are threatened by airborne risk sources. It is found that the accidental air pollution risk is comparatively higher in the Xuanhua and Wanquan conurbations. High-risk chemical enterprises (312–432 risk scores) are mostly located near urban areas with high population density where many people are vulnerable receptors to potential air pollution accidents. The resulting risk map indicates that acute airborne pollution from Zhangjiakou would not be a threat either to the proposed Olympic site at Chongli or to downwind Beijing.  相似文献   

11.
With a high-resolution SO2 emission inventory categorized by industries and seasons for Beijing city and gridded meteorological data fields from NCEP, the pollution dispersion model, HYSPLIT4 (Hybrid Single Particulate Lagrangian Integrated Trajectory, version 4), is used to determine the day-to-day variation of surface SO2 in Beijing for 2000 and 2001. Furthermore,the contributions of different emission sources in and around Beijing to the surface SO2 are studied. As shown in comparison with observations, the model does well in simulating the daily variation and seasonal distribution. The model computation of the annual source contributions to Beijing surface SO2 indicates that local emissions from the city give the largest contribution and the sources from the surrounding regions contribute only about 20%. During SO2 polluted or unpolluted days, the contribution from the latter can exceed 30%, and depending upon weather conditions, the contribution may exceed 40%. If the emissions from the surrounding sources during the winter heating season are assumed to be doubled in intensity, their contribution to surface SO2 in Beijing increased from 21% to 35% and 25% to 40% in 2000 and 2001, respectively. Evaluation of 7 types of emission sources identified for Beijing for their relative contribution to the concentration of surface SO2 has shown that area emissions by industrial production and furnaces, though discharging relatively small amounts (less than 1/3 of the total), have the largest contribution to the urban surface SO2, which is the key to the mitigation of the pollutant in the city.  相似文献   

12.
13.
Petrenko  O. A.  Sebakh  L. K.  Fashchuk  D. Ya. 《Water Resources》2002,29(5):573-586
The results of monitoring performed by Southern Research Institute of Marine Fisheries and Oceanography (YugNIRO) in 1990–1998 in the course of dredging operations with dumping in the Black Sea of soils dredged in Kerch Strait are analyzed. The study covered the soil physical properties and particle size distribution; the extent of the soil pollution by heavy metals, oil products, and organochlorine compounds; the amounts of such pollutants delivered into the sea with these soils; the extent of pollution of water and bottom sediment in the zone of soil dumping offshore Kerch Strait. The amounts of pollutants entering the Black Sea as a result of soil dumping are compared with those entering the sea from other pollutant sources, and the extent of environmental pollution in the dumping zone is compared with the background level of the sea pollution. The admissible rates of soil dumping are estimated, and potential consequences of this process are predicted.  相似文献   

14.
Based on meteorological and pollution data from January 2017 to December 2019, in this paper the long-term distribution of surface aerosol particles, and the interaction between aerosol pollution and meteorological factors in four cities of the Yangtze River Delta (YRD) region is investigated. The long-term observation shows the law of typical aerosol pollution characteristics. Meteorological factors are significantly different during aerosol-polluted and nonpolluted days. The effect of each meteorological factor on aerosol pollution may vary by different seasons and cities. The changes in meteorological factors are not completely consistent during aerosol fine-mode and coarse-mode polluted days. To distinguish the possible sources of surface aerosol particles, the potential source contribution function and concentration-weighted trajectory models are applied to study transport sources. Based on the detailed analyses, this study will provide a reliable basis for further pollution control in the YRD.  相似文献   

15.
滆湖氮、磷平衡研究   总被引:16,自引:1,他引:15  
通过1992 ̄1993年千岛湖水质、底质、生物和污染源调查,对其水环境质量和污染物输入作了综合评价。结果表明,千岛湖水质状况良好;但局部水域水质污染逐年加重,湖泊已属中营养状态。非点源输入量占入湖污染总量的95%,其中50%来自上游安徽来水。建立了对流扩散模型并进行水质预测,提出了千岛湖水环境保护对策。  相似文献   

16.
The spatial/temporal variation information of atmospheric dynamic-chemical processes at observation site points of the "canopy" boundary of Beijing urban building ensemble and over urban area "surface", as well as the seasonal correlation structure of the gaseous and particulate states of urban atmospheric pollution (UAP) and its seasonal conversion feature at observation points are investigated, using the comprehensive observation data of the Beijing City Air Pollution Observation Experiment (BECAPEX) in winter and summer 2003 with a "point-surface" combined research approach. By using "one dimension spatial empirical orthogonal function (EOF)" principal component analysis (PCA) mode, the seasonal change of gaseous and particulate states of atmospheric aerosols and the association feature of pollutant species under the background of the complicated structure of urban boundary layer (UBL) are analyzed. The comprehensive analyses of the principal components of particle concentrations,gaseous pollutant species, and meteorological conditions reveal the seasonal changes of the complex constituent and structure features of the gaseous and particulate states of UAP to further trace the impact feature of urban aerosol pollution surface sources and the seasonal difference of the component structure of UAP. Research results suggest that in the temporal evolution of the gaseous and particulate states of winter/summer UAP, NOx, CO, and SO2 showed an "in-phase" evolution feature, however, O3 showed an "inverse-phase" relation with other species,all possessing distinctive dependent feature. On the whole, summer concentrations of gaseous pollutants CO, SO2, and NOx were obviously lower than winter ones, especially, the reduction in CO concentration was most distinctive, and ones in SO2 and NOx were next. However, the summer O3 concentration was more than twice winter one. Winter/summer differences in PM10and PM2.5 particle concentrations were relatively not obvious, which indicates that responses of PM10 and PM2.5 particle concentrations to the difference of winter/summer heating period emission sources are far less distinctive than those of NOx, SO2, and CO. The correlation feature of winter/summer gaseous and particulate states depicts that both PM10 and PM2.5 particles were significantly correlated with NOx, and their correlations with NOx are more significant than those with other pollutants. Through PCA, it is found that there was a distinctive difference in the principal component combination structure of winter/summer PM10 and PM2.5 particles: SO2 and NOx dominated in the principal component of winter PM10 and PM2.5 particles; while CO and NOx played the major role in the principal component of summer PM10 and PM2.5 particles. For winter/summer PM10 and PM2.5 particles, there might exist the gaseous and particulate states correlation structures of different "combinations" of such dependent pollutant species. Research results also uncover that the interaction processes of gaseous and particulate states were also related with the vertical structure of UBL, that is to say, the low value layer of UBL O3 concentration was associated with the collocation of atmospheric vertical structures of the low level inversion,inverse humidity, and small wind, which depicts summer boundary layer atmospheric character, i.e.the compound impact of the dependent factor "combination" of wind, temperature, and humidity elements and their collocation structure on the variations of different gaseous pollutant concentrations. Such a depth structure of the extremely low value of O3 concentration in the UBL accords with its "inverse-phase" relation with other gaseous pollutant species. The PCA of meteorological factors associated with PM10 and PM2.5 concentrations also reveals the sensitivity of PM10 and PM2.5 concentration to the combinatory feature of local meteorological conditions.  相似文献   

17.
官厅水库水体营养状况分析   总被引:23,自引:4,他引:19  
2001-2002年的调研结果显示,官厅水库为富营养型湖泊.初级生产力为浮游藻类与大型水生高等植物混合型.浮游藻类细胞密度为1126.54×104cells/L,其中蓝藻占53.4%,绿藻占32.1%.优势种为水华微囊藻(Microcystisflos-aquae)和铜绿微囊藻(M.aeruginosa).7-10月库区水体出现大面积的微囊藻水华.TN、TP分别为1.182mg/L和0.045mg/L,水体已达富营养.官厅水库TN和TP的质量浓度比大于7,Chla与TP存在显著的正相关.磷是水体中初级生产力增长的限制性营养盐.官厅水库的污染物主要来自点源,其次是面源和内源.应以点源为主进行综合防治,恢复其饮用水源地功能,以缓解北京市淡水资源的紧缺状态.  相似文献   

18.
The objective of this study was to determine the concentrations and possible sources of heavy metals and persistent organic pollutants (POPs) in water and estuarine sediments from Gao-ping River in order to evaluate the environmental quality of aquatic system in southern Taiwan. High concentrations of heavy metals including Cr, Zn, Ni, Cu and As, ranging from 10.7 to 180 mg/kg-dry weight (dw), were detected in sediments from Gao-ping River. When normalized to the principal component analysis (PCA), swinery and electroplating wastewaters were found to be the most important pollution sources for heavy metals. Of various organochlorine pesticide (OCP) residues detected, aldrin and total-hexachlorocyclohexane (HCH) were frequently found in sediments. The total concentrations of OCPs were in the range 0.47-47.4 ng/g-dw. Also, the total-HCH, total-cyclodiene, and total-dichlorodiphenyltrichloroethane (DDT) were in the range 0.37-36.3, 0.21-19.0, and 0.44-1.88 ng/g-dw, respectively. The polychlorinated biphenyl (PCB) concentrations in sediments from Gao-ping River ranged between 0.37 and 5.89 ng/g-dw. The PCB concentrations are positively correlated to the organic contents of the sediment particles. alpha-HCH was found to be the dominant compound of HCH in the sediments, showing that long-range transport may be the possible source for the contamination of HCH in sediments from Gao-ping River. In summary, trace amounts of POPs in estuarine sediments from Gao-ping River were detected, showing that there still exist a wide variety of POP residues in the river sediments in Taiwan. These POP residues may be mainly from long-range transport and weathered agricultural soils, while heavy metal contamination is primarily from the swinery and industrial wastewaters.  相似文献   

19.
Surface ozone (O3) and vertical O3 distribution in the planetary boundary layer (PBL) at the Ming Tombs (40°17′15″N, 116°12′51″E), Beijing during September 7―12, 2001 were measured by ground based measurements and an in-situ tethersonde system. The results indicated that O3 concentration measured at surface level agreed well with that measured by tethersonde system in daytime when active thermal mixing was dominated. Ozone showed the lowest concentration before the sunrise and then gradually increased in the morning and reached the maximum in the afternoon 14:00―17:00 (lst). After sunset, O3 gradually decreased and resulted in low value below 200―300 m due to surface loss processes and chemical destruction in stable boundary layer characterized by temperature inversions. High O3 was observed whenever there was pollutants transport from the metropolitan areas of Beijing. Our analysis suggested the complex terrain of the Ming Tombs region caused pollutants transported from Beijing to accumulate in the PBL, and resulted in severe O3 pollution, with a maximum over 160×10-9, when the synoptic conditions was favorable for photochemical O3 production.  相似文献   

20.
Water and sediment qualities are studied by analyzing samples taking from the mouths of the Haihe, Duliujian, New Ziya and Beipai rivers in the Haihe river basin in north China in 2005 and 2001, in order to find the changes of water and sediment pollutions. The concentrations of heavy metals, arsenic, total nitrogen (TN) and total phosphorus (TP) are analyzed and results have been compared for the two times. The in-situ measurement for Dissolved Oxygen (DO) and Sediment Oxygen Demand (SOD) rates were carried at the Haihe and Duliujian river mouths in 2006. The results show that the waters of the 4 river mouths are still seriously polluted, though much improved in the case of the Haihe and Duliujian rivers. The main pollutants are TP and TN in the New Ziya and Beipai rivers and mercury (Hg) at all 4 river mouths. Compared with those in 2001, the concentrations of almost all metals and arsenic in the 4 river mouths have decreased. Water quality at Haihe and Duliujian shows an improving trend, while the water quality at Beipai is similar to that of 2001. In contrast, water at the New Ziya river mouth is more severely polluted. The sediments in the 4 river mouths are not seriously polluted by heavy metals but are polluted by nitrogen and phosphorus. Most of the pollutant contents in the sediments show little change between 2001 and 2005. The in-situ DO and SOD measurement shows that the waters at the Haihe river mouth is in the state of oxygen depletion, and SOD is important consumer of DO at the river mouths. The overall analysis shows that increasing water pollution and eutrophication in waters far from cities are ongoing causes of concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号