首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction between synoptic eddy and low-frequency flow (SELF) has been the subject of many studies. In this study, we further examine the interaction by introducing a transformed eddy-potential-vorticity (TEPV) flux that is obtained from eddy-potential-vorticity flux through a quasi-geostrophic potential-vorticity inversion. The main advantage of using the TEPV flux is that it combines the effects of the eddy-vorticity and heat fluxes into the net acceleration of the low-frequency flow in such a way that the TEPV flux tends to be analogous to the eddy-vorticity fluxes in the barotropic framework. We show that the anomalous TEPV fluxes are preferentially directed to the left-hand side of the low-frequency flow in all vertical levels throughout the troposphere for monthly flow anomalies and for climate modes such as the Arctic Oscillation (AO). Furthermore, this left-hand preference of the TEPV flux direction is a convenient three-dimensional indicator of the positive reinforcement of the low-frequency flow by net eddy-induced acceleration. By projecting the eddy-induced net accelerations onto the low-frequency flow anomalies, we estimate the eddy-induced growth rates for the low frequency flow anomalies. This positive eddy-induced growth rate is larger (smaller) in the lower (upper) troposphere. The stronger positive eddy feedback in the lower troposphere may play an important role in maintaining an equivalent barotropic structure of the low-frequency atmospheric flow by balancing some of the strong damping effect of surface friction.  相似文献   

2.
基于1981—2020年日本气象厅(Japanese Meteorological Agency,JMA)再分析资料JRA-55(Japanese 55-year Reanalysis)以及美国国家气候中心(Climate Prediction Center,CPC)卫星降水资料,分析了瞬变涡旋活动特征及其对我国东部夏季降水异常的影响,并对其可能机制展开讨论。研究表明,蒙古国至我国东北和华北地区既是瞬变涡旋活动的活跃区域,也是其输送的大值区域,其中瞬变涡旋对热量和水汽的经向输送占主导地位,是中高纬热量和水汽的重要来源。根据瞬变涡旋经向热量和水汽输送变率的强度确定了瞬变热量和水汽输送的关键区域,分别为(45°~60°N,100°~130°E)和(35°~50°N,100°~120°E),并定义了瞬变热量和水汽指数,其与我国东部夏季降水异常的回归结果表明,瞬变涡旋活动对我国东部夏季降水存在显著影响。中高纬天气尺度瞬变涡旋对热量、水汽和动量的输送异常,通过波流相互作用过程,对平均流形成了反馈,导致季节平均环流、水汽分布和水汽输送的异常,从而在热力、动力和水汽条件的共同作用下引起降水异常。  相似文献   

3.
In this study, we investigate the interaction between the tropical Intraseasonal Oscillation (ISO) and midlatitude atmospheric low-frequency variability, using observational data and numerical models, with a special emphasis on the role of the synoptic eddy feedback. A statistical closure for the synoptic eddy-to-low frequency flow feedback is constructed, based on a singular value decomposition (SVD) method with observational data. Applying this statistical closure to a barotropic model and a baroclinic 2½-layer model, we study the role of the synoptic eddy feedback in the midlatitude response to the tropical ISO forcing. Both observational and modeling studies show that the strongest synoptic eddy forcing appears at the Pacific and Atlantic storm-track regions, and the synoptic eddy exerts a positive feedback to the midlatitude low-frequency flow induced by tropical ISO forcing. Our numerical experiments demonstrate the possible role of midlatitude disturbance forcing in the ISO initiation at the equator. The signal of the midlatitude perturbations propagates southeastward in the form of a Rossby wave package. It may reach the equator within several days under either easterly or westerly basic flow regimes. The response at the equator has observed ISO-like structure and eastward propagation characteristics.  相似文献   

4.
This paper explores the role of synoptic eddy feedback in the air-sea interaction in the North Atlantic region, particularly the interaction between the North Atlantic Oscillation (NAO) and the North Atlantic sea surface temperature anomalies (SSTA) tripole. A linearized five-layer primitive equation atmospheric model with synoptic eddy and low-frequency flow (SELF) interaction is coupled with a linearized oceanic mixed-layer model to investigate this issue. In this model, the “climatological” storm track/activity (or synoptic eddy activity) is characterized in terms of spatial structures, variances, decay time scales and propagation speeds through the complex empirical orthogonal function (CEOF) analysis on the observed data, which provides a unique tool to investigate the role of synoptic eddy feedback in the North Atlantic air–sea coupling. Model experiments show that the NAO-like atmospheric circulation anomalies can produce tripole-like SSTA in the North Atlantic Ocean, and the tripole-like SSTA can excite a NAO-like dipole with an equivalent barotropic structure in the atmospheric circulation, which suggests a positive feedback between the NAO and the SSTA tripole. This positive feedback makes the NAO/SSTA tripole-like mode be the leading mode of the coupled dynamical system. The synoptic eddy feedback plays an essential role in the origin of the NAO/SSTA tripole-like leading mode and the equivalent barotropic structure in the atmosphere. Without synoptic eddy feedback, the atmosphere has a baroclinic structure in the response field to the tripole-like SSTA forcing, and the leading mode of the dynamic system does not resemble NAO/SSTA tripole pattern.  相似文献   

5.
The role of mesoscale oceanic eddies in driving the large-scale currents is studied in an eddy-resolving, double-gyre ocean model. The new diagnostic method is proposed, which is based on dynamical decomposition of the flow into the large-scale and eddy components. The method yields the time history of the eddy forcing, which can be used as additional, external forcing in the corresponding non-eddy-resolving model of the gyres. The main strength of this approach is in its dynamical consistency: the non-eddy-resolving solution driven by the eddy forcing history correctly approximates the original large-scale flow component. It is shown that statistical decompositions, which are based on space-time filtering diagnostics, are dynamically inconsistent. The diagnostics algorithm is formulated and tested, and the diagnosed eddies are analysed, both statistically and dynamically. It is argued that the main dynamic role of the eddies is to maintain the eastward-jet extension of the subtropical western boundary current (WBC). This is done largely by both the time–mean isopycnal-thickness flux and the relative-vorticity eddy flux fluctuations. The fluctuations drive large-scale flow through the nonlinear rectification mechanism. The relative-vorticity flux contributes mostly to the eastward jet meandering. Finally, eddy fluxes driven by both the eddies and the large-scale flow are found to be important. The latter is typically neglected in the analysis, but here it corresponds to important large-scale feedback on the eddies.  相似文献   

6.
The feedback of an arctic polynya, which is a large ice-free zone within the sea ice, on the hemispheric climate is studied with the ECMWF T21 GCM. For this purpose a control and an anomaly integration, in which a polynya was introduced in the Kara Sea, are compared. As the GCM, like the real atmosphere, shows a high level of low frequency variability, the mean response to the changed boundary conditions is obscured by internal noise. The necessary significance analyses are thus performed to enhance the signal-tonoise ratio within the framework of an a priori chosen guess pattern and a multivariate test statistic. The sensible and latent heat fluxes increased above the polynya, which resulted in a warming of the lower troposphere above and near the polynya. No statistically significant local or global sea-level pressure changes are associated with this heating. However we find a significant change of hemispheric extent of the geopotential fields at 300 hPa, if we use as guess patterns the eigenmodes of the barotropic vorticity equation. The different mean flow field is accompanied by significant changes of the synoptic transient eddy field. We find a significant variation in the barotropic and baroclinic forcing of the mean flow by the eddies, a change in the location and intensity of the storm tracks and in the conversion between eddy available and eddy kinetic energy. The additional heat flux from the polynya results in a reduction of the meridional heat flux by the synoptic eddies on the western Atlantic.  相似文献   

7.
中国南海夏季风强、弱年多尺度相互作用能量学特征   总被引:1,自引:0,他引:1  
杨悦  徐邦琪  何金海 《气象学报》2016,74(4):556-571
中国南海夏季风为东亚季风的主要系统之一,其具有多重尺度特征,除季节平均环流场外,低频(季节内振荡)和高频(天气尺度)扰动也十分活跃,各尺度系统存在明显的年际变化。该研究使用ERA-Interim和NCEP/NCAR两套再分析资料,从季风平均动能(MKE)诊断的角度出发,探讨了1979-2010年中国南海夏季风环流年际变化的能量来源及其和扰动场的相互作用过程。结果表明:中国南海夏季风对流活跃年份,中国南海南部(12°N以南)及中南半岛一带为季风平均动能显著增强区,此与南亚季风区西风急流的增强并向东延伸有关;中国南海北部(12°N以北)及西太平洋为气旋性环流盘踞,季风槽加深。中国南海南部季风平均动能增强的能量源自于扰动动量通量与平均环流的相互作用,强季风年,平均环流失去较少的动能给扰动场(亦即平均环流保留较多的动能)。通过进一步探讨高频(<10 d)及低频(10-90 d)扰动场与平均环流不同分量的(散度、涡度、风垂直切变)相互作用过程,发现季风平均动能的增长主要来自于<10 d扰动与季风平均散度和涡度的相互作用。中国南海北部季风槽区季风平均动能的维持来自于大气热源和平均上升运动的相互作用,但同时有较多的季风平均动能向扰动动能转换,有利于扰动的成长。因此,强季风年,中国南海北部热带气旋生成数目增多,夏季北传的季节内振荡也增强,导致中国南部沿海及华南地区出现较多的灾害天气。   相似文献   

8.
涡动非地转位势通量对风暴轴维持的影响   总被引:7,自引:1,他引:7  
通过对涡动动能方程和涡动有效位能方程的诊断分析,结果发现,斜压性是导致风暴轴入口区天气尺度涡动发展的最主要原因,而涡动发展后则主要通过非地转位势通量向下游频散能量而衰减,并进一步成为激发下游新的涡动活动发展的主要能量来源。因此,涡动非地转位势通量所引起的"下游发展效应"对风暴轴在东端弱斜压区的维持具有十分重要的作用。  相似文献   

9.
涡旋相关法测定湍流通量偏低的研究   总被引:15,自引:3,他引:12  
针对野外实验所发现的不同观测法测定地表能通量不平衡问题,进行了均匀加热大气边界层的大涡模拟实验.用模拟的湍流风、温度和湿度涨落的时间序列证实,对流边界层低频涡普遍存在,并经常以一簇一簇热泡的形式出现.风速较小时,有限时长的取样不足以捕捉低频涡的贡献,可造成涡旋相关法测量的统计量异常偏低.仿照涡旋相关法的步骤进行数据处理发现,经去除平均或趋势计算的温度和湿度通量偏低程度在边界层下部随观测高度的增高而显著,其中尤以湿度通量为甚.其结果在一定程度上可以解释低风速条件下地表能通量测量的不闭合问题,但是尚不能完全解释诸如青藏高原实验出现的严重不闭合.文中对此作了探讨性的讨论.  相似文献   

10.
瞬变天气涡旋对北大西洋涛动的增强效应   总被引:3,自引:2,他引:1  
使用NCEP/NCAR再分析资料计算了冬季北大西洋瞬变涡旋活动强度与北大西洋涛动(NAO)逐日指数的时间序列,结果发现:当涡旋活动强度出现峰值后会伴随NAO模态增强现象;而随着NAO的增强,涡旋能量同落.为了判断是否涡流相互作用将天气尺度的能量转换为低频尺度的能量,使用瞬变涡度通量来研究涡度与能量的传输.通过分析瞬变涡...  相似文献   

11.
Since the interaction between atmospheric synoptic eddy(SE)(2–8 days) activity and low-frequency(LF)(monthly)flow(referred to as SELF) plays an essential role in generating and maintaining dominant climate modes,an evaluation of the performance of BCC_CSM1.1(m) in simulating the SE feedback onto the LF flow is given in this paper.The model captures well the major spatial features of climatological eddy vorticity forcing,eddy-induced growth rate,and patterns of SELF feedback for the climate modes with large magnitudes in cold seasons and small magnitudes in warm seasons for both the Northern and Southern Hemisphere.As in observations,the eddy-induced growth rate and SELF feedback patterns in the model also show positive SE feedback.Overall,the relationships between SE and LF flow show that BCC_CSM1.1(m)satisfactorily captures the basic features of positive SE feedback,which demonstrates the simulation skill of the model for LF variability.Specifically,such an evaluation can help to find model biases of BCC_CSM1.1(m) in simulating SE feedback,which will provide a reference for the model's application.  相似文献   

12.
Multiscale asymptotics are used to derive three systems of equations connecting the planetary geostrophic (PG) equations for gyre-scale flow to a quasigeostrophic (QG) equation set for mesoscale eddies. Pedlosky (1984), following similar analysis, found eddy buoyancy fluxes to have only a small effect on the large-scale flow; however, numerical simulations disagree. While the impact of eddies is relatively small in most regions, in keeping with Pedlosky’s result, eddies have a significant effect on the mean flow in the vicinity of strong, narrow currents.First, the multiple-scales analysis of Pedlosky is reviewed and amplified. Novel results of this analysis include new multiple-scales models connecting large-scale PG equations to sets of QG eddy equations. However, only introducing anisotropic scaling of the large-scale coordinates allows us to derive a model with strong two-way coupling between the QG eddies and the PG mean flow. This finding reconciles the analysis with simulations, viz. that strong two-way coupling is observed in the vicinity of anisotropic features of the mean flow like boundary currents and jets. The relevant coupling terms are shown to be eddy buoyancy fluxes. Using the Gent-McWilliams parameterization to approximate these fluxes allows solution of the PG equations with closed tracer fluxes in a closed domain, which is not possible without mesoscale eddy (or other small-scale) effects. The boundary layer width is comparable to an eddy mixing length when the typical eddy velocity is taken to be the long Rossby wave phase speed, which is the same result found by Fox-Kemper and Ferrari (2009) in a reduced gravity layer.  相似文献   

13.
Geometric features in oceanic mesoscale eddies such as tilt and anisotropy can influence the properties of the Reynolds stress that provides feedback between the eddies and the background flow. By regarding an eddy as a wave, previous studies have parameterized the Reynolds stress based on the equivalence in the tilt angle between the phase of the eddy stream functions and the variance ellipse for the Reynolds stress (RS-ellipse). However, the wave assumption cannot predict the anisotropy of the RS-ellipse, and also largely simplifies the eddy geometry, which would naturally be an ellipsoid rather than a wave. The present study explores the shape relation between elliptical eddies and the RS-ellipse, by mathematically reformulating the Reynolds stress based on the eddy shape. The new formula reveals that the shape relation is regulated by the horizontal extent of the occurrence probability distribution (PDF) of the eddy, and that the shape of the eddy and RS-ellipse are identical at the place of maximum PDF when the horizontal scale of the PDF is sufficiently larger than the size of the eddy. A similar tendency is found in eddies detected by satellite altimetry in the Kuroshio Extension jet region. A detailed analysis of the PDF in this region shows that the tilts of the eddies are likely to be consistent with the destabilization effect on the jet, suggesting a strong relation between the eddy geometry and the jet's stability in this region. These findings may open a path toward a new method to parameterize the Reynolds stress with the background state, exploiting the shape equivalence between the eddies and the RS-ellipse.  相似文献   

14.
The formation of three Loop Current Eddies, Ekman, Franklin, and Hadal, during the period April 2009 through November 2011 was observed by an array of moored current meters and bottom mounted pressure equipped inverted echo sounders. The array design, areal extent nominally 89° W to 85° W, 25° N to 27° N with 30–50 km mesoscale resolution, permits quantitative mapping of the regional circulation at all depths. During Loop Current Eddy detachment and formation events, a marked increase in deep eddy kinetic energy occurs coincident with the growth of a large-scale meander along the northern and eastern parts of the Loop Current. Deep eddies develop in a pattern where the deep fields were offset and leading upper meanders consistent with developing baroclinic instability. The interaction between the upper and deep fields is quantified by evaluating the mean eddy potential energy budget. Largest down-gradient heat fluxes are found along the eastern side of the Loop Current. Where strong, the horizontal down-gradient eddy heat flux (baroclinic conversion rate) nearly balances the vertical down-gradient eddy heat flux indicating that eddies extract available potential energy from the mean field and convert eddy potential energy to eddy kinetic energy.  相似文献   

15.
A multi-scale moisture budget analysis is used to identify the mechanisms responsible for the sensitivity of the water cycle to spatial resolution using idealized regional aquaplanet simulations. In the higher resolution simulations, moisture transport by eddy fluxes dry the boundary layer enhancing evaporation and precipitation. This effect of eddies, which is underestimated by the physics parameterizations in the low-resolution simulations, is found to be responsible for the sensitivity of the water cycle both directly, and through its upscale effects on the transport of mean moisture by the mean circulation. Correlations among moisture transport by eddies at adjacent ranges of scales provides a potential for reducing this sensitivity by representing the unresolved eddies by their marginally resolved counterparts.  相似文献   

16.
阿留申低压低频变化及其相关的瞬变动力学过程分析   总被引:2,自引:0,他引:2  
利用NCEP/NCAR 1979—2013年的再分析资料,研究了冬季阿留申低压低频变化的环流特征,探讨了阿留申低压低频变化形成和维持的相关天气尺度瞬变强迫机制。冬季阿留申低压的低频变化在850 h Pa环流场上表现为北太平洋海盆区一个异常气旋/异常反气旋在局地强弱变化的过程,即阿留申低压在低频尺度上先异常增强/减弱随后逐渐恢复正常态的演变过程;850 h Pa上大气温度低频变化表现为低频冷中心在西北太平洋建立并逐渐东移的过程。对天气尺度瞬变扰动活动及其强迫的异常进行分析表明,北太平洋海盆区上空的瞬变动力强迫在阿留申低压异常增强的时期为负异常,有利于阿留申低压低频变化异常空间型的形成和维持。由瞬变热力强迫异常引起的温度倾向异常场表现为北太平洋中部以40°N为界南正—北负的空间分布,其南部正异常在一定程度上抑制和削弱了低频冷中心向南的扩张。  相似文献   

17.
中高纬度大气低频模态研究进展   总被引:1,自引:0,他引:1  
大气低频模态是导致中高纬地区季节及气候变化的主要因素,加强低频模态动力机制的认识对于提高短期气候预测水平具有十分重要的科研意义和应用价值。由于中高纬大气低频环流本身的复杂性,关于其动力机制的研究仍然是大气动力学中重点难点问题。本文简单回顾了激发维持低频模态的前两种机制,即:外源强迫、气流的纬向非均匀性对大气低频模态的影响。从观测事实和模式结果出发,着重介绍了瞬变波与基本气流相互作用激发维持低频模态的第三种机制,且详细阐述了线性假设条件下,瞬变波与基本气流相互作用的动力机制。本文最后针对瞬变波与基本气流相互作用研究中一些尚未解决的问题进行了讨论。  相似文献   

18.
冬季北大西洋风暴轴的东西变化及其能量诊断   总被引:6,自引:4,他引:2  
利用NCEP/NCAR再分析资料,定义一个风暴轴经度指数,基于这个指数做合成分析,对冬季北大西洋风暴轴63 a(1948-2010年)的东西变化特征及其能量平衡差异进行了诊断。主要结论如下:(1)北大西洋风暴轴存在明显地东扩和西退。当风暴轴向东扩展时,天气尺度瞬变波可以向下游发展至乌拉尔山以东的亚洲上空;风暴轴西退时,天气尺度瞬变波活动范围向西收缩到15°W以西的大洋上空。(2)能量诊断表明,当风暴轴向东扩展时,涡动动能在高纬度的大西洋东部及西欧上空明显增强。在0°以西的区域,涡动动能的增强主要归因于能量斜压转换过程的增强;而在0°以东区域,涡动动能的增强可能与涡动非地转位势通量引起的"下游发展效应"增强有关。风暴轴向西收缩时,变化相反。  相似文献   

19.
Surface energy balance closure has been examined using eddy covariance measurements and other observations at one industrial and three agricultural sites near the Nakdong River during daytime. Energy balance closure was evaluated by calculating the long-term averaged energy balance ratio (EBR), the ratio of turbulent energy fluxes to available energy, and the statistical regression of turbulent energy fluxes against available energy using half-hourly data. The EBR of all sites ranges from 0.46 to 0.83 while the coefficient of determination (R 2) ranges from 0.37 to 0.77. The energy balance closure was relatively poor compared to homogeneous sites, indicating the influence of surface heterogeneity. Unmeasured heat storage terms also seem to play a role in the surface energy budget at the industrial and irrigated sites. The energy balance closure was better in conditions of high wind speed, low downward short wave radiation, and high friction velocity, which suggests the role of heat storage term and surface heterogeneity in surface energy balance at these sites. Spectrum analysis shows a sharp roll-off at the low frequency in co-spectrum, which indicates that low-frequency motions do not significantly contribute to turbulent fluxes. Both the spectra and cospectra in unstable conditions show a broad peak indicating the influence of multiple sizes of large eddies over heterogeneous sites. Most of ogive curves for the kinematic latent and sensible heat fluxes reach an asymptote within 30 minutes regardless of the EBR value, indicating that low frequency motion is not a main factor for energy imbalance. However, stationary eddies due to landscape heterogeneity still remains as a possible cause for energy imbalance.  相似文献   

20.
Mid-latitude eddies are an important component of the climatic system due to their role in transporting heat, moisture and momentum from the tropics to the poles, and also for the precipitation associated with their fronts, especially in winter. We study northern hemisphere storm-tracks at the Last Glacial Maximum (LGM) and their influence on precipitation using ocean-atmosphere general circulation model (OAGCM) simulations from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2). The difference with PMIP1 results in terms of sea-surface temperature forcing, fundamental for storm-track dynamics, is large, especially in the eastern North Atlantic where sea-ice extends less to the south in OAGCMs compared to atmospheric-only GCMs. Our analyses of the physics of the eddies are based on the equations of eddy energetics. All models simulate a consistent southeastward shift of the North Pacific storm-track in winter, related to a similar displacement of the jet stream, partly forced by the eddies themselves. Precipitation anomalies are consistent with storm-track changes, with a southeastward displacement of the North Pacific precipitation pattern. The common features of North Atlantic changes in the LGM simulations consist of a thinning of the storm-track in its western part and an amplification of synoptic activity to the southeast, in the region between the Azores Islands and the Iberian Peninsula, which reflects on precipitation. This southeastward extension is related to a similar displacement of the jet, partly forced by the eddies. In the western North Atlantic, the synoptic activity anomalies are at first order related to baroclinic generation term anomalies, but the mean-flow baroclinicity increase due to the presence of the Laurentide ice-sheet is partly balanced by a loss of eddy efficiency to convert energy from the mean flow. Moisture availability in this region is greatly reduced due to more advection of dry polar air by stationary waves, leading to less synoptic-scale latent heat release and hence less precipitation also. In terms of seasonality, the stormy season is shifted later in the year by a few days to a month depending on the season and the model considered. This shift does not directly reflect on the first-order seasonal cycle of precipitation, which also depends on other mechanisms, especially in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号