首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Abstract

Volume change during natural gas hydrate dissociation is important for calculation of excess pore pressure and corresponding submarine slope stability. A short discussion is presented here to the paper of Wang et al. including some notes about the standard condition and parameters used in their model. This discussion calls attention to the wrong use of standard temperature and pressure during calculation of volume change, excess pore pressure, and submarine slope stability.  相似文献   

2.
Abstract

The behavior of gas‐laden, soft submarine soils subjected to changes in mean normal and shearing stresses is discussed. Information developed for partially saturated soils is extended to soft sediments. Calculations indicating that gas‐laden submarine soils generally have degrees of saturation in situ that exceed ~ 90% are presented. Therefore, it is suggested that insignificant error is introduced in predicting the effective stresses of soft sediments using the standard effective stress equation and neglecting the pore‐gas pressure.

The presence of gas is shown to permit volume changes of soft sediments under wave loadings. The compressibility of the gaswater pore fluid is quantified. The pore‐pressure response, related to the ratio of the compressibility of the pore fluid and soil structure, is shown to be similar to that of fully saturated soils. The relevance of “undrained”; shipboard tests to the prediction of slope stability is discussed. It is concluded that the presence of gas leads to undrained strengths, as measured on recovered samples, which are lower than those that occur in situ. The use of these measured strengths in stability calculations leads to conservative predictions of submarine slope stability.  相似文献   

3.
A series of tests were conducted in order to investigate the shear strength and deformation behavior of methane hydrate-bearing sediments during dissociation using the thermal recovery method or depressurization method. An innovative temperature-controlled high pressure triaxial apparatus which can reproduce the in situ conditions of hydrate reservoirs was used. The results indicate that: (1) the failure strength of isotropically consolidated methane hydrate-bearing sediments which dissociated completely using the thermal recovery method is less than that of pure Toyoura sand. However, the initial stiffness and volumetric strain are higher than that of pure Toyoura sand. (2) The thermal recovery method will cause the failure of methane hydrate-bearing sediments when the axial load is higher than the strength of methane hydrate-bearing sediments after dissociation. (3) The depressurization method will not cause collapse of methane hydrate-bearing sediments during depressurization. However, water pressure recovery will lead to failure when the axial load is larger than the strength of the methane hydrate-bearing sediments after dissociation. (4) The depressurization rate shows little effect on the ultimate deformation of methane hydrate-bearing sediments, while the initial deformation rate increases with increasing depressurization rate. (5) The larger the reduction of pore pressure, the larger axial strain and volumetric strain.  相似文献   

4.
Abstract

The production of natural gas from hydrates involves notable phase change within the hydrate-bearing sediments as well as induces strong thermo-hydro-mechanical (THM) coupling response within the overlying layer, which potentially leads to well instability and hazardous deformation. This study aims to shed some light on this issue by developing a one-dimensional analytical model. Parametric study was conducted with typical values being determined in accordance with those in the South China Sea (SCS). During the production process, simulations with different permeability all exhibit a continuous accumulating response of excess pore pressure (EPP) with strong oscillation. Thermally induced EPP accumulates near the bottom of the overlying layer, resulting in greater peak values of EPP in the lower part of the layer, which has significant impact on the stability of the mining wells. The temperature load is the dominant factor to determine the expansion of overlying layer. With greater permeability, the accumulation rate of thermal-induced pore pressure is close to the dissipation rate, which to some extent alleviates the expansion. The proposed model is expected to form the basis for studies regarding this issue, and the presented results provide useful implications for the development of improved gas production techniques for deep sea hydrates.  相似文献   

5.
This paper describes studies of the effect of hydrate dissociation on the safety and stability of methane hydrate-bearing sediments. Methane hydrates within the sediments were dissociating under the conditions of a confining pressure of 0.5 MPa, 1 MPa, 2 MPa and a temperature of −5 °C. After 6 h, 24 h, or 48 h, a series of triaxial compression tests on methane hydrate-bearing sediments were performed. The tests of ice-clay and sediments without hydrate dissociation were performed for comparison. Focusing on the mechanical properties of the sediments, the experimental results indicated that the shear strength of the ice-clay mixtures was lower than that of the methane hydrate-bearing sediments. The strength of the sediments was reduced by hydrate dissociation, and the strength tended to decrease further at the lower confining pressures. The secant modulus ES of the sediments dropped by 42.6% in the case of the dissociation time of the hydrate of 48 h at the confining pressure of 1 MPa; however, the decline of the initial yield modulus E0 was only 9.34%. The slower hydrate dissociation rate contributed to reducing the failure strength at a declining pace. Based on the Mohr–Coulomb strength theory, it was concluded that the decrease in strength was mainly affected by the cohesive reduction. Moreover, the mathematical expression of the M–C criterion related to the hydrate dissociation time was proposed. This research could be valuable for the safety and stability of hydrate deposits in a permafrost region.  相似文献   

6.
The Ulleung Basin, East (Japan) Sea, is well-known for the occurrence of submarine slope failures along its entire margins and associated mass-transport deposits (MTDs). Previous studies postulated that gas hydrates which broadly exist in the basin could be related with the failure process. In this study, we identified various features of slope failures on the margins, such as landslide scars, slide/slump bodies, glide planes and MTDs, from a regional multi-channel seismic dataset. Seismic indicators of gas hydrates and associated gas/fluid flow, such as the bottom-simulating reflector (BSR), seismic chimneys, pockmarks, and reflection anomalies, were re-compiled. The gas hydrate occurrence zone (GHOZ) within the slope sediments was defined from the BSR distribution. The BSR is more pronounced along the southwestern slope. Its minimal depth is about 100 m below seafloor (mbsf) at about 300 m below sea-level (mbsl). Gas/fluid flow and seepage structures were present on the seismic data as columnar acoustic-blanking zones varying in width and height from tens to hundreds of meters. They were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression/pockmark (SCD) on the seafloor. Reflection anomalies, i.e., enhanced reflections below the BSR and hyperbolic reflections which could indicate the presence of gas, together with pockmarks which are not associated with seismic chimneys, and SCDs are predominant in the western-southwestern margin, while the BSR, BSCs and SCMs are widely distributed in the southern and southwestern margins. Calculation of the present-day gas-hydrate stability zone (GHSZ) shows that the base of the GHSZ (BGHSZ) pinches out at water depths ranging between 180 and 260 mbsl. The occurrence of the uppermost landslide scars which is below about 190 mbsl is close to the range of the GHSZ pinch-out. The depths of the BSR are typically greater than the depths of the BGHSZ on the basin margins which may imply that the GHOZ is not stable. Close correlation between the spatial distribution of landslides, seismic features of free gas, gas/fluid flow and expulsion and the GHSZ may suggest that excess pore-pressure caused by gas hydrate dissociation could have had a role in slope failures.  相似文献   

7.
A triaxial system is designed with a temperature range from-20 ℃ to 25 ℃ and a pressure range from 0 MPa to 30 MPa in order to improve the understanding of the mechanical properties of gas hydrate-bearing sediments.The mechanical properties of synthetic gas hydrate-bearing sediments (gas hydrate-kaolin clay mixture) were measured by using current experimental apparatus.The results indicate that:(1) the failure strength of gas hydrate-bearing sediments strongly depends on the temperature.The sediment’s strength increases with the decreases of temperature.(2) The maximum deviator stress increases linearly with the confining pressure at a low-pressure stage.However,it fluctuates at a high-pressure stage.(3) Maximum deviator stress increases with increasing strain rate,whereas the strain-stress curve has no tremendous change until the axial strain reaches approximately 0.5%.(4) The internal friction angles of gas hydrate-bearing sediments are not sensitive to kaolin volume ratio.The cohesion shows a high kaolin volume ratio dependency.  相似文献   

8.
The properties of marine sediments vary spatially, and the undrained shear strength of marine clay increases linearly with depth because of depositional processes and the effective overburden pressure. To evaluate the stability of submarine slope considering the spatial variability of soil strength, the random field discretized by the Karhunen-Loève expansion is combined with the limit equilibrium method to conduct reliability analysis. For simplicity, our physical model does not include many complexities such as the effects of excess pore water pressure on the stability of submarine slopes. Stability estimates of the infinite slope model, under both static and seismic loading, are made with three types of one-dimensional stationary or non-stationary random fields. The two-dimensional slope model is also analyzed, where the shear strength varies with the positions of the strips because of the discrete random-field function for the soil material. In submarine slope reliability analysis, the non-stationary random field of the linearly increasing soil strength is used, instead of the commonly used stationary one. To obtain the failure probability through Monte Carlo simulations, a novel response surface method based on Gaussian process regression is introduced to build the surrogate model. The computational efficiency is significantly increased, because there is a considerable reduction of calls of the deterministic analysis. Therefore, the proposed method makes the prediction of submarine landslides which are usually rare events with very small probabilities more efficient.  相似文献   

9.
The methane gas production potential from its hydrates, which are solid clathrates, with methane gas entrapped inside the water molecules, is primarily dependent on permeability characteristics of their bearing sediments. Moreover, the dissociation of gas hydrates, which results in a multi-phase fluid migration through these sediments, becomes mandatory to determine the relative permeability of both gaseous and aqueous fluids corresponding to different hydrate saturations. However, in this context, the major challenges are: (1) obtaining undisturbed in-situ samples bearing gas hydrates; and (2) maintenance of the thermodynamic conditions to counter hydrate dissociation. One of the ways to overcome this situation is synthesis of gas hydrates in laboratory conditions, followed by conducting permeability tests on them. In addition, empirical relationships that relate permeability of the gas hydrate bearing sediments to pore-structure characteristics (viz., pore size distribution and interconnectivity) can also be conceived. With this in view, a comprehensive review of the literature dealing with different techniques adopted by researchers for synthesis of gas hydrates, permeability tests conducted on the sediments bearing them, and analytical and empirical correlations employed for determination of permeability of these sediments was conducted and a brief account of the same is presented in this article.  相似文献   

10.
南海北部天然气水合物研究进展   总被引:11,自引:0,他引:11  
天然气水合物是一种新型的储量巨大的绿色能源,是目前世界各国研究界的研究热点之一。我国以及美国、日本、印度、韩国等国家都采集到了天然气水合物的实物样品。虽然我国对天然气水合物的研究起步较晚,但近年来的研究已经取得了飞速的进步,而且也于2007年5月在南海北部陆坡的神狐海域成功采集到天然气水合物的实物样品,这是在南海海域首次获取天然气水合物实物样品,证实了南海北部蕴藏着丰富的天然气水合物资源,标志着我国天然气水合物调查研究水平又上了一个新的台阶。目前,南海北部陆坡已经作为我国天然气水合物未来开发的战略选区之一。在总结我国天然气水合物以往十几年研究工作的基础上,综述了我国天然气水合物近年来在南海北部的地质、地球物理、地球化学3个方面的研究进展,提出了未来天然气水合物勘探和研究的方向和建议。  相似文献   

11.
Supplies of conventional natural gas and oil are declining fast worldwide, and therefore new, unconventional forms of energy resources are needed to meet the ever-increasing demand. Amongst the many different unconventional natural resources are gas hydrates, a solid, ice-like crystalline compound of methane and water formed under specific low temperature and high pressure conditions. Gas hydrates are believed to exist in large quantities worldwide in oceanic regions of continental margins, as well as associated with permafrost regions in the Arctic. Some studies to estimate the global abundance of gas hydrate suggest that the total volume of natural gas locked up in form of gas hydrates may exceed all known conventional natural gas reserves, although large uncertainties exist in these assessments. Gas hydrates have been intensively studied in the last two decades also due to connections between climate forcing (natural and/or anthropogenic) and the potential large volumes of methane trapped in gas hydrate accumulations. The presence of gas hydrate within unconsolidated sediments of the upper few hundred meters below seafloor may also pose a geo-hazard to conventional oil and gas production. Additionally, climate variability and associated changes in pressure-temperature regimes and thus shifts in the gas hydrate stability zone may cause the occurrence of submarine slope failures.Several large-scale national gas hydrate programs exist especially in countries such as Japan, Korea, Taiwan, China, India, and New Zealand, where large demands of energy cannot be met by domestic supplies from natural resources. The past five years have seen several dedicated deep drilling expeditions and other scientific studies conducted throughout Asia and Oceania to understand gas hydrates off India, China, and Korea. This thematic set of publications is dedicated to summarize the most recent findings and results of geo-scientific studies of gas hydrates in the marginal seas and continental margin of the Asia, and Oceania region.  相似文献   

12.
Detailed reviews of high-resolution acoustic studies in the continental slope of the Gulf of Cadiz has revealed the following gas-related features: acoustic turbidity and blanking, bright spots, ancient and modern pockmarks, high-amplitude diffractions, acoustic plumes and turbidity in the water column, and BSRs. The origin of the gas is believed to be biogenic and thermogenic. The BSR-like acoustic anomalies occur intermittently in some areas of the upper slope and tend to occur in the volcanoes/diapirs. The pressure–temperature conditions deduced for the location of those acoustic anomalies do not correspond to the conditions of stability of gas hydrates. It is suggested that these volcanoes/diapirs intrusions may locally induce anomalously higher pore pressure conditions on the immediately surrounding sediments, affecting the stability field of the gas hydrates.  相似文献   

13.
The hydrate-bearing sediments above the bottom simulating reflector (BSR) are associated with low attenuation or high quality factor (Q), whereas underlying gas-bearing sediments exhibit high attenuation. Hence, estimation of Q can be important for qualifying whether a BSR is related to gas hydrates and free-gas. This property is also useful for identifying gas hydrates where detection of BSR is dubious. Here, we calculate the interval Q for three submarine sedimentary layers bounded by seafloor, BSR, one reflector above and another reflector below the BSR at three locations with moderate, strong and no BSR along a seismic line in the Makran accretionary prism, Arabian Sea for studying attenuation (Q−1) characteristics of sediments. Interval Q for hydrate-bearing sediments (layer B) above the BSR are estimated as 191 ± 11, 223 ± 12, and 117 ± 5, whereas interval Q for the underlying gas-bearing sediments (layer C) are calculated as 112 ± 7, 107 ± 8 and 124 ± 11 at moderate, strong and no BSR locations, respectively. The large variation in Q is observed at strong BSR. Thus Q can be used for ascertaining whether the observed BSR is due to gas hydrates, and for identifying gas hydrates at places where detection of BSR is rather doubtful. Interval Q of 98 ± 4, 108 ± 5, and 102 ± 5, respectively, at moderate, strong and no BSR locations for the layer immediately beneath the seafloor (layer A) show almost uniform attenuation.  相似文献   

14.
《Marine and Petroleum Geology》2012,29(10):1751-1767
Supplies of conventional natural gas and oil are declining fast worldwide, and therefore new, unconventional forms of energy resources are needed to meet the ever-increasing demand. Amongst the many different unconventional natural resources are gas hydrates, a solid, ice-like crystalline compound of methane and water formed under specific low temperature and high pressure conditions. Gas hydrates are believed to exist in large quantities worldwide in oceanic regions of continental margins, as well as associated with permafrost regions in the Arctic. Some studies to estimate the global abundance of gas hydrate suggest that the total volume of natural gas locked up in form of gas hydrates may exceed all known conventional natural gas reserves, although large uncertainties exist in these assessments. Gas hydrates have been intensively studied in the last two decades also due to connections between climate forcing (natural and/or anthropogenic) and the potential large volumes of methane trapped in gas hydrate accumulations. The presence of gas hydrate within unconsolidated sediments of the upper few hundred meters below seafloor may also pose a geo-hazard to conventional oil and gas production. Additionally, climate variability and associated changes in pressure-temperature regimes and thus shifts in the gas hydrate stability zone may cause the occurrence of submarine slope failures.Several large-scale national gas hydrate programs exist especially in countries such as Japan, Korea, Taiwan, China, India, and New Zealand, where large demands of energy cannot be met by domestic supplies from natural resources. The past five years have seen several dedicated deep drilling expeditions and other scientific studies conducted throughout Asia and Oceania to understand gas hydrates off India, China, and Korea. This thematic set of publications is dedicated to summarize the most recent findings and results of geo-scientific studies of gas hydrates in the marginal seas and continental margin of the Asia, and Oceania region.  相似文献   

15.
针对内孤立波在行进过程中遇到海底斜坡会对海底产生力的作用,不同坡度斜坡对内孤立波的动力响应应该存在差异。本文通过水槽中制造内波,对不同角度的斜坡对内孤立波的动力响应过程进行了研究。结果表明,内孤立波通过陆架斜坡上方,会造成斜坡沉积物超孔隙水压力的积累;在相同振幅条件下,缓坡沉积物动力响应的幅度比陡坡沉积物大;随着振幅的增加,缓坡发生动力破坏程度大于陡坡;在斜坡沉积物稳定性受到破坏之前,超孔隙水压力的积累和释放同时存在,内孤立波振幅的增大会加剧超孔隙水压力的释放。该结果对于斜坡沉积物在内孤立波作用下失稳破坏的动力学研究和斜坡稳定性分析将起到指导作用。  相似文献   

16.
The overall stability of marine strata holding gas hydrates is dependent on their shear strength characteristics. These characteristics, in turn, are dependent on thermal flux that is imposed for dissociation of the hydrates for the safe and efficient extraction of methane gas from the hydrate bearing sediments. Due to the imposition of thermal flux on these sediments, their fabric structure and pore space hydrate saturation changes, which impacts the overall stability of the sea bed. Estimating stability conditions in such a ‘multiphase and dynamic system’ necessitates collection of undisturbed samples without compromising their in-situ thermodynamic conditions. This is a daunting task given the huge cost of procuring samples and the challenge of maintaining an undisturbed sample with in-situ thermodynamic conditions till it is brought to the laboratory. Synthesizing hydrate bearing sample sediments in laboratory for conducting studies to identify heat migration mechanisms and thermal property measurements and linking them to the shear strength characteristics provides an affordable solution to this problem. With this in view, a critical review of the available literature, dealing with laboratory synthesis of hydrate bearing sediments, their thermal and strength characteristics, the coupled phenomenon of heat and fluid migration, and its impact on the overall stability of marine sediments, has been conducted and presented in this paper. This will facilitate understanding the factors governing and the mechanism of heat transfer in a multiphase system, the changes in the system brought about by the hydrate dissociation front, and the overall impact on the stability of seabed.  相似文献   

17.
Regional erosion of the Rock Garden ridge top, a bathymetric high within New Zealand’s Hikurangi Subduction Margin, is likely associated with its gas hydrate system. Seismic data reveal gas pockets that appear partially trapped beneath the shallow base of gas hydrate stability. Steady-state fluid flow simulations, conducted on detailed two-dimensional geological models, reveal that anomalous fluid pressure can develop close to the sea floor in response to lower-permeability hydrate-bearing sediments and underlying gas pockets. Transient simulations indicate that large-scale cycling of fluid overpressure may occur on time scales of a few to tens of years. We predict intense regions of hydro-fracturing to preferentially develop beneath the ridge top rather than beneath the flanks, due to more pronounced overpressure generation and gas migration through hydrate-bearing sediments. Results suggest that sediment weakening and erosion of the ridge top by hydro-fracturing could be owed to fluid dynamics of the shallow gas hydrate system.  相似文献   

18.
以 Iversion的海底稳定渗流理论为基础 ,运用静力极限平衡方法和库仑破坏准则 ,提出了以海底水下斜坡坡度、沉积物有效内摩擦角和内聚力为自变量 ,波浪在海底产生的孔压梯度为参变量的海底稳定性分析方法。并给出了黄河水下三角洲不同土质所需的临界孔压梯度判断曲线 ,预测了黄河水下三角洲的海底稳定性 ,其分析结果与实测资料吻合良好  相似文献   

19.
Host sediments may exert a significant influence on the formation of gas hydrate reservoirs. However, this issue has been largely neglected in the literature. In this study, we investigated the types, characteristics and the depositional model of the fine-grained gas hydrate-bearing sediments in the northeastern margin of the South China Sea by integrating core visual observations and logging-while-drilling downhole logs. The gas hydrate-bearing sediments consist dominantly of muddy sediments formed in the inter-canyon ridges of the upper continental slope, including hemipelagites, debrites (mud with breccia) and fine-grained turbidites. Cold-seep carbonates and associated slumping talus, muddy breccia debrites, as well as coarse-grained turbidites, may locally occur. Four classes and six sub-classes of log facies were defined by cluster analysis. Core-log correlation indicates that gas hydrates are majorly distributed in fine-grained sediments with high resistivity and low acoustic transit time (AC) log responses, which are easily differentiated from the fine-grained background sediments of high gamma-ray (GR), high AC, and low resistivity log values, and the seep carbonates characterized by low GR, high resistivity, high density, low AC and low porosity log values. The primary host sediments consist of fine-grained hemipelagic sediments formed by deposition from the nepheloid layers of river material and from the microfossils in seawater column. Most of the hemipelagic sediments, however, might have been extensively modified by slumping and associated gravity flow processes and were re-deposited in the forms of debrites and turbidites. Locally developed seep carbonates associated with gas hydrate dissociation and leakage provided additional sources for the gravity flow sediments.  相似文献   

20.
Soupy and mousse-like fabrics are disturbance sedimentary features that result from the dissociation of gas hydrate, a process that releases water. During the core retrieval process, soupy and mousse-like fabrics are produced in the gas hydrate-bearing sediments due to changes in pressure and temperature conditions. Therefore, the identification of soupy and mousse-like fabrics can be used as a proxy for the presence of gas hydrate in addition to other evidence, such as pore water freshening or anomalously cool temperature. We present here grain-size results, mineralogical composition and magnetic susceptibility data of soupy and mousse-like samples from the southern Hydrate Ridge (Cascadia accretionary complex) acquired during Leg 204 of the Ocean Drilling Program. In order to study the relationship between sedimentary texture and the presence of gas hydrates, we have compared these results with the main textural and compositional data available from the same area. Most of the disturbed analyzed samples from the summit and the western flank of southern Hydrate Ridge show a mean grain size coarser than the average mean grain size of the hemipelagic samples from the same area. The depositional features of the sediments are not recognised due to disturbance. However, their granulometric statistical parameters and distribution curves, and magnetic susceptibility logs indicate that they correspond to a turbidite facies. These results suggest that gas hydrates in the southern Hydrate Ridge could form preferentially in coarser grain-size layers that could act as conduits feeding gas from below the BSR. Two samples from the uppermost metres near the seafloor at the summit of the southern Hydrate Ridge show a finer mean grain-size value than the average of hemipelagic samples. They were located where the highest amount of gas hydrates was detected, suggesting that in this area the availability of methane gas was high enough to generate gas hydrates, even within low-permeability layers. The mineralogical composition of the soupy and mousse-like sediments does not show any specific characteristic with respect to the other samples from the southern Hydrate Ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号