首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Palaeozoic to Mesozoic accretionary complexes of southwest Japan include various types of mélange. Most mélanges are polygenetic in origin, being sedimentary or diapiric mélanges that were overprinted by tectonic deformation during subduction. Sedimentary mélanges, without a tectonic overprint, are present in the Permian accretionary complexes of the Akiyoshi and Kurosegawa belts and in the Early Cretaceous accretionary complex of the Chichibu Belt. These mélanges are characterized by dominant basalt and limestone clasts, within a mudstone matrix. The basalt and limestone clasts within the sedimentary mélanges were derived from ancient seamounts. Subduction of a seamount results in deformation of the pre-existing accretionary wedge, and it is difficult to incorporate a seamount into an accretionary wedge; therefore, preservation of seamount fragments requires a special tectonic setting. Oceanic plateau accretion might play an important role in interrupting the processes of subduction and accretion during the formation of accretionary complexes. Especially the Mikabu oceanic plateau might have caused the cessation of accretion during the Early Cretaceous. The subduction and accretion of volcanic arcs and oceanic plateaux helps to preserve sedimentary mélanges from tectonic overprinting by preventing further subduction.  相似文献   

2.
How ophiolitic mèlanges can be defined as sutures is controversial with regard to accretionary orogenesis and continental growth.The Chinese Altay,East junggar,Tianshan,and Beishan belts of the southern Central Asian Orogenic Belt(CAOB) in Northwest China,offer a special natural laboratory to resolve this puzzle.In the Chinese Altay,the Erqis unit consists of ophiolitic melanges and coherent assemblages,forming a Paleozoic accretionary complex.At least two ophiolitic melanges(Armantai,and Kelameili) in East Junggar,characterized by imbricated ophiolitic melanges,Nb-enriched basalts,adakitic rocks and volcanic rocks,belong to a Devonian-Carboniferous intra-oceanic island arc with some Paleozoic ophiolites,superimposed by Permian arc volcanism.In the Tianshan,ophiolitic melanges like Kanggurtag,North Tianshan,and South Tianshan occur as part of some Paleozoic accretionary complexes related to amalgamation of arc terranes.In the Beishan there are also several ophiolitic melanges,including the Hongshishan,Xingxingxia-Shibangjing,Hongliuhe-Xichangjing,and Liuyuan ophiolitic units.Most ophiolitic melanges in the study area are characterized by ultramafic,mafic and other components,which are juxtaposed,or even emplaced as lenses and knockers in a matrix of some coherent units.The tectonic settings of various components are different,and some adjacent units in the same melange show contrasting different tectonic settings.The formation ages of these various components are in a wide spectrum,varying from Neoproterozoic to Permian.Therefore we cannot assume that these ophiolitic melanges always form in linear sutures as a result of the closure of specific oceans.Often the ophiolitic components formed either as the substrate of intra-oceanic arcs,or were accreted as lenses or knockers in subduction-accretion complexes.Using published age and paleogeographic constraints,we propose the presence of (1) a major early Paleozoic tectonic boundary that separates the Chinese Altay-East Junggar multiple subduction system  相似文献   

3.
ABSTRACT

The Franciscan Complex comprises the largely sedimentary basement of the California Coast Ranges. This classic trench deposit has undergone a series of superimposed tectonic events since the end of Jurassic time, involving accretion, high-pressure (HP) recrystallization, buoyancy and wedge-driven exhumation, and transcurrent slip. Processes reflect plate convergence, transpressive-orthogonal subduction, and transpressive–transtensive offset. Besides stratigraphically intact strata, the Franciscan displays widespread mélanges of four main types: diapiric serpentinite intrusions, sedimentary olistostromes, broken formations, and tectonic block-in-matrix units. In the northern Coast Ranges, mélanges are especially prevalent in the Central Belt, but also occur in the Eastern and Coastal belts. Diapirs show upward, buoyant flow relative to wall rocks, but some also appear to have involved wedge-driven thrusting. Many serpentinite diapirs and tectonic mélanges contain exotic metamafic inclusions rimmed by actinolite–chlorite reaction rinds. Olistostromes include gravity slump blocks and conglomeratic lenses; petrologically similar to larger slide blocks, pebble layers document a surficial, sedimentary origin, as does the presence of volcanic arc clasts. Broken formations grade by degrees from intact stratal continuity to disrupted units; they only contain cognate boudins of rocks present in the ductile matrix. Some tectonic mélanges are simply intensely disaggregated broken formations, and include rock types of the stratigraphic host. Other tectonic mélanges carry exotic HP blocks of diverse lithologies, generally reflecting higher pressures than attended recrystallization of the low-density matrix. The four mélange types formed through diverse convergent plate-tectonic processes. Many were subjected to a multi-stage overprint; most are strongly deformed, obscuring original textures and structures. Broken formations are the most common disrupted units, accompanied by lesser amounts of tectonic mélanges, olistostromes, and ductile-matrix diapirs. In aggregate, these units reflect the operation of contrasting processes that attest to plate-tectonic evolution of the Franciscan Complex. Strong deformation accompanied oceanic plate underflow, but also took place during coeval HP metamorphism and surfaceward return of accretionary packets, then transitioned to long-sustained, chiefly dextral slip.  相似文献   

4.
The origin of block-in-matrix mélanges has been the subject of intense speculation by structural and tectonic geologists working in accretionary complexes since their first recognition in the early twentieth century. Because of their enigmatic nature, a number of important international meetings and a large number of publications have been devoted to the problem of the origin of mélanges. As mélanges show the effects of the disruption of lithological units to form separate blocks, and also apparently show the effects shearing in the scaly fabric of the matrix, a tectonic origin has often been preferred. Then it was suggested that the disruption to form the blocks in mélanges could also occur in a sedimentary environment due to the collapse of submarine fault scarps to form olistostromes, upon which deformation could be superimposed tectonically. Subsequently it has proposed that some mélanges have originated by overpressured clays rising buoyantly towards the surface, incorporating blocks of the overlying rocks in mud or shale diapirs and mud volcanoes.Two well-known examples of mélanges from the Banda and Sunda arcs are described, to which tectonic and sedimentary origins were confidently ascribed, which proved on subsequent examination to have been formed due to mud diapirism, in a dynamically active environment, as the result of tectonism only indirectly. Evidence from the Australian continental Shelf to the south of Sumba shows that large quantities of diapiric mélange were generated before the diapirs were incorporated in the accretionary complex. Comparable diapirs can be recognised in Timor accreted at an earlier stage. Evidence from both Timor and Nias shows that diapiric mélange can be generated well after the initial accretion process was completed.The problem is: Why, when diapirism is so abundantly found in present convergent margins, is it so rarely reported from older orogenic belts? Many occurrences of mélanges throughout the world to which tectonic and/or sedimentary and origins have been ascribed, may in future investigations prove to have had a diapiric origin.It is emphasised that although the examples of diapiric mélange described here may contain ophiolitic blocks, they were developed in shelf or continental margin environments, and do not contain blocks of high grade metamorphic rocks in a serpentinous matrix; such mélanges originate diapirically during subduction in a mantle environment, as previous authors have suggested.  相似文献   

5.
The western margin of Myanmar is the northern extension the active Sunda (India-Eurasia) subduction zone. Coastal regions and offshore islands have remarkable exposures of chaotic rock terranes along wave-cut terraces that allow characteristics of tectonic, sedimentary and diapiric mélanges to be recognized. Tectonic shear zones (tectonic mélanges) contain fragments of Cretaceous ophiolites (chrome-spinel-bearing peridotites and radiolarian cherts) that are in contact with thrust packets of Eocene turbidite units (broken formations). The turbidites contain shale-rich beds that have been sheared during soft-sediment deformation (sedimentary broken formations) and are sandwiched between undeformed thick sandy beds. These are mass transport deposits (MTDs) that most likely formed during deposition of the initial detritus of the Himalayan orogenic zone, probably trench slope basins on the accretionary prism. The ophiolitic and turbiditic thrust slices have been exhumed and are currently being intruded by active mud volcanoes that bring fragments of units up from depth to the surface, forming diapiric mélanges. These diapiric mélange bodies contain only small fragments (<50 cm) that are randomly oriented and do not exhibit shear fabrics. Because the region lacks superimposed deformation characteristic of most orogenic belts, the origins of all three rock bodies can easily be distinguished.  相似文献   

6.
Ocean plate stratigraphy (OPS) is essential to understanding accretionary wedges and complexes along convergent plate margins. Mélanges within accretionary wedges and complexes are the products of fragmentation and mixing processes during and following OPS accretion. A new term, ‘OPS mélange’, is proposed here for mélanges composed mostly of blocks of OPS with an argillaceous matrix, and for a mixture of mélanges of multiple origins with either broken or coherent formations. An OPS mélange results from the fragmentation and disruption of OPS, without admixing of other components. Three major types of OPS mélange can be distinguished on the basis of their components: turbidite type, chert–turbidite type, and limestone–basalt type. These three types potentially form similar mélanges, but they are derived from different parts of the OPS, depending on the level of the decollement surface. The concept of ‘OPS mélange’ can be applied to most of the mélanges in accretionary prisms and complexes worldwide. In addition, this proposal recognizes a distinction between processes of fragmentation and mixing of OPS components, and mixing of ophiolite components, the latter of which results in serpentinite mélanges, not OPS mélanges. Mélanges composed of OPS sequences occur worldwide. The recognition of OPS mélanges is a key aspect of understanding tectonic processes at convergent margins, which result in mélange formation in orogenic belts globally.  相似文献   

7.
班公湖—双湖—怒江(中北段)—昌宁—孟连对接带广泛出露特提斯大洋岩石圈俯冲消减过程中产生的不同时代、不同构造环境、不同变质程度、不同变形样式的洋板块构造地层系统、增生混杂的构造—岩石组合体,可识别出增生的远洋沉积岩、海沟浊积岩、古生代—中生代蛇绿岩、蛇绿混杂岩、洋岛-海山消减增生楔、洋底沉积增生杂岩,基底残块以及以蓝片岩、榴辉岩为代表的高压—超高压变质岩带,记录了青藏高原原古特提斯大洋形成演化的地质信息。班公湖—双湖—怒江—昌宁—孟连对接带是青藏高原中部一条重要的原古特提斯大洋自北向南后退式俯冲消亡的巨型增生杂岩带,构筑了冈瓦纳大陆与劳亚-泛华夏大陆分界带。  相似文献   

8.
岩湾-鹦鸽咀蛇绿混杂岩是秦岭商丹蛇绿混杂岩带的重要组成部分,由变质基性火山岩(玄武岩)、蛇纹岩、变辉长岩、硅质岩、变复理石(云母石英片岩)等构造岩块组成.其中变基性火山岩具有N-MORB的地球化学特征,安山岩具有与俯冲作用密切相关的岛弧火山岩的性质.玄武岩的锆石SHRIMP U-Pb年龄为483 Ma±13Ma,与天水关子镇和丹风蛇绿混杂岩的时代相一致.对岩湾-鹦鸽咀蛇绿混杂岩的岩石组成和形成时代进行研究,可为进一步探讨商丹蛇绿混杂岩带和秦岭造山带的增生造山作用提供重要证据.  相似文献   

9.
Olistostromes (sedimentary mélanges) represent the products of ancient submarine mass transport processes. We present a comparative analysis of the occurrences and internal structures of these sedimentary mélanges at a global scale with a focus on the Circum-Mediterranean, Appalachian and Circum-Pacific regions, and discuss their formation and time-progressive evolution in different tectonic settings. Lithological compositions, stratigraphy, and structural features of olistostromes reflect the operation of an entire spectrum of mass transport processes during their development through multi-stage deformation phases. The general physiography and tectonic setting of their depocenters, the nature, scale and rate of downslope transformation mechanisms, and global climatic events are the main factors controlling the internal structure and stratigraphy of olistostromes. Based on the tectonic settings of their formation olistostromes are classified as: (i) passive margin, (ii) convergent margin and subduction–accretion, and (iii) collisional and intra-collisional types. Systematic repetitions of these different olistostrome types in different orogenic belts provide excellent markers for the timing of various tectonic events during the Wilson cycle evolution of ocean basins. Olistostromes are best preserved in paleo active margins, covering vast areas of thousands of km2, where they underwent significant downslope translation, up to hundreds of kilometers. Incorporation of olistostromes into subduction–accretion complexes and orogenic belts takes place during discrete episodes of tectonic events, and their primary (sedimentary) fabric may be commonly reworked and overprinted by subsequent phases of tectonic and metamorphic events. We apply the basic nomenclature of structural geology, sedimentology and basin analysis in studying the internal structure, lithological makeup, and mechanisms of formation and extraordinary downslope mobility of olistostromes.  相似文献   

10.
Accretionary complex histories are broadly understood. Sedimentation in seafloor and trench environments on drifting subducting plates and in associated trenches, followed by (1) deformation and metamorphism in the subduction zone and (2) subsequent uplift at the overriding plate edge, result in complicated stratigraphic and structural sequences in accretionary complexes. Recognizing, defining, and designating individual terranes in subduction complexes clarify some of these complicated relationships within the resulting continent-scale orogenic belts. Terrane designation does not substitute for detailed stratigraphic and structural mapping. Stratigraphic and structural mapping, combined with radiometric and palaeontologic dating, are necessary for delineation of coherent, broken, and dismembered formations, and various mélange units, and for clarification of the details of subduction complex architecture and history. The Franciscan Complex is a representative subduction complex that has evolved through sedimentation, faulting, folding, and low-temperature metamorphism, followed by uplift, associated deformation, and later overprinted deformation. Many belts of Franciscan rocks are offset by strike-slip faults associated with the dextral San Andreas Fault System. In the Franciscan Complex, among the terrane names applied widely, are the ‘Yolla Bolly Terrane’ and the ‘Central Terrane’. Where detailed mapping and detrital zircon ages exist, data reveal that the two names have been applied to rocks of similar general character and age. In the northeastern Diablo Range, Franciscan Complex rocks include coherent units, broken and dismembered formations, and various types of mélanges, all assigned at various times to the Yolla Bolly and other terranes. The details of stratigraphic and structural history revealed by large-scale mapping and radiometric dating prove to be more useful in clarifying the accretionary complex history than assigning a terrane name to the rocks. That history will assist in resolving terrane assignment issues and allow discrimination of subduction-associated and post-subduction events, essential for understanding the overall history of the orogen.  相似文献   

11.
中亚造山带东段何时与何地关闭,从俯冲到关闭的过程以及随后的陆内演化又经历了什么主要事件,目前还存在不同认识。中亚造山带东段林西地区的蛇绿混杂岩及其周围地区的区域地质调查表明,以杏树洼蛇绿混杂岩和双井片岩为代表的西拉木伦河构造带是一个晚古生代的增生楔,在该混杂岩带中发育了典型的岩块被包裹在基质中的构造。该楔体被中、晚二叠世克德河砾岩所覆盖。增生楔中最早的近东西向构造代表了向南俯冲阶段的变形,随后继续经历向北的逆冲推覆,卷入了中、晚二叠世地层,形成了碰撞期的变形;在晚二叠世末期—三叠纪早期,蛇绿混杂岩以及上覆的克德河砾岩又经历了区域性的强烈的右行韧性剪切,并发生应变分解。晚二叠世区域性的右行韧性剪切在中亚造山带南缘普遍发育,代表了中亚造山带已经全部进入陆内环境。双井片岩也经历了与蛇绿混杂岩类似的变形事件,在增生楔下部经历变质作用,并在碰撞期抬升至地表,晚期为区域性的右行剪切。同时,结合锆石与磷灰石低温热年代学测试表明,双井片岩和蛇绿混杂岩共同经历了中、晚侏罗世源自北侧蒙古-阿霍茨克大洋关闭导致的近南北向挤压、早白垩世期间遍及东亚的区域性伸展以及晚白垩世短暂的构造反转事件。  相似文献   

12.
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens in the world. The mechanism of continental growth and tectonic evolution of the CAOB remain debated. Here we present an overview of Early Paleozoic ophiolitic mélanges, calc-alkaline intrusions, and metamorphic rocks in West Junggar with an aim to provide constraints on the time and mechanism of subduction initiation in the Junggar Ocean, a branch of the southern Paleo-Asian Ocean (PAO). The Early Paleozoic ophiolitic mélanges are composed of ultramafic-mafic rocks, cherts, pelagic limestones, basaltic breccias and tuffs. The mafic rocks from these ophiolitic mélanges are divided into MORB-like and OIB-like types. The MORB-like rocks were formed in a fore-arc setting, but the OIB-like mafic rocks were formed by the intra-plate magmatism related to mantle plume activities. The Early Paleozoic intrusions are occurred as small stocks with a dominant composition of diorite, trondhjemite, and granodiorite. These granitoids display (high-K) calc-alkaline affinities, and have high and positive εNd(t) and εHf(t) values, formed in an arc-related setting. The metamorphic complex is mainly composed of blueschist and amphibolite blocks with metamorphism ages ranging from ~500 Ma to ~460 Ma. Their protoliths are calc-alkaline andesite and tholeiitic and alkaline basalts, formed in an arc related and seamount setting, respectively. It is clearly show that the West Junggar was under an intra-oceanic subduction regime during the Early Paleozoic, and the initial subduction of the southern PAO might have occurred in the Early Cambrian. Based on our observations, and in combination with previous work, we propose the plume-induced subduction initiation model for the Early-Middle Cambrian tectonic evolutionary of the Junggar Ocean. Our new model not only shed light on subduction initiation dynamics of the southern PAO, but also contribute to tectonic evolution of the CAOB.  相似文献   

13.
ABSTRACT

The Tarbagatay Complex, located in northwest Junggar, is situated tectonically between the Zharma–Saur arc to the north and the Tacheng terrane and the Boshchekol–Chingiz arc to the south. This Complex belt is variably composed of ophiolitic mélange, sedimentary mélange, and coherent units of turbidites and shallow water sediments. These rocks crop out in fault-bound slices with fault-parallel asymmetric folds. Both the lithologies and deformation features of the Tarbagatay Complex suggest an accretionary origin generally with a top-to-the-south tectonic vergence, suggesting N-dipping subduction beneath the Zharma–Saur arc. The presence of a former ocean is indicated by the Ordovician ophiolite mélanges and related marine fossils. The time duration of the Tarbagatay Complex can be bracketed by detrital zircon ages of turbidites and shallow water sediments with a lower limit of major peak ages of 350–370 Ma, and an upper limit of middle Permian indicated by detrital zircon ages of 262.3 Ma. Based on these data, we suggest that the subduction of the Tarbagatay Ocean likely started in the Late Devonian and lasted until the middle Permian. Taking into account the formation of the northern part of the Kazakhstan orocline, which has a similar temporal-spatial framework, we propose a tectonic model for the western CAOB that involves accretion and amalgamation from the Ordovician to the middle Permian.  相似文献   

14.
造山带内蛇绿混杂岩带结构与组成的精细研究可为古板块构造格局重建和古洋盆演化提供最直接证据。北山造山带内存在多条蛇绿混杂岩带,记录了古亚洲洋古生代以来的俯冲和闭合过程,然而其大地构造演化长期存在争议。红石山—百合山蛇绿混杂岩带位于北山造山带北部,主要由蛇绿(混杂)岩和增生杂岩组成,具典型的"块体裹夹于基质"的混杂岩结构特征,发育紧闭褶皱、无根褶皱、透入性面理和双重逆冲构造。蛇绿混杂岩带中岩块主要由超镁铁质-镁铁质岩(变质橄榄岩、辉石橄榄岩、异剥辉石岩、蛇纹岩)、辉长岩、玄武岩、斜长花岗岩、硅质岩等洋壳残块以及奥陶纪火山岩、灰岩等外来岩块组成,基质则主要为蛇纹岩、砂板岩及少量的绿帘绿泥片岩;在蛇绿混杂岩带北侧发育有台地相灰岩与深水浊积岩组成的沉积混杂块体,具滑塌堆积特征。蛇绿混杂岩带内发育三期构造变形,前两期为中深构造层次下形成的透入性变形,第三期为浅表层次的脆性变形,未形成区域性面理。空间上,由增生杂岩和蛇绿(混杂)岩组成的百合山蛇绿混杂岩带共同仰冲于绿条山组浊积岩之上,具有与红石山地区蛇绿混杂岩带相似的岩石组成、构造变形和时空结构特征。百合山蛇绿混杂岩带南侧发育同期的明水岩浆弧,由晚石炭世石英闪长岩-花岗闪长岩-二长花岗岩以及白山组岛弧火山岩组成,其与百合山蛇绿混杂岩带共同构成了北山造山带北部石炭—二叠纪的沟-弧体系,指示了红石山—百合山洋盆向南俯冲的极性。  相似文献   

15.
In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous–Permian stratigraphic sequences and sedimentary environments in southeastern Inner Mongolia combined with the geology of its neighboring areas. Studies show that during the Carboniferous–Permian in the eastern segment of the Tianshan-Hinggan Orogenic System, there was a giant ENE–NE-trending littoral-neritic to continental sedimentary basin, starting in the west from Ejinqi eastwards through southeastern Inner Mongolia into Jilin and Heilongjiang. The distribution of the Lower Carboniferous in the vast area is sparse. The Late Carboniferous or Permian volcanic-sedimentary rocks always unconformably overlie the Devonian or older units. The Upper Carboniferous–Middle Permian is dominated by littoral-neritic deposits and the Upper Permian, by continental deposits. The Late Carboniferous–Permian has no trace of subduction-collision orogeny, implying the basin gradually disappeared by shrinking and shallowing. In addition, it is of interest to note that the Ondor Sum and Hegenshan ophiolitic mélanges were formed in the pre-Late Silurian and pre-Late Devonian respectively, and the Solonker ophiolitic mélange formed in the pre-Late Carboniferous. All the evidence indicates that the eastern segment of the Paleo-Asian Ocean had closed before the Late Carboniferous, and most likely before the latest Devonian (Famennian).  相似文献   

16.
Melanges play three principal, overlapping roles in the architecture of subduction accretionary complexes (SACs) during and after SAC formation. First, tectonic melanges serve as zones of concentrated deformation within and below the accreted rocks that are assembled during the subduction-accretion process. These melanges facilitate preservation of inter-melange, less deformed, accretionary units (AUs). Beneath the trench side of the SAC, the initial deformation zone along the decollement at the top of the down-going plate is marked by non-melange, tectonically dismembered formations or thinner units of scaly rock and breccia that separate accreted rocks above from the subducting rocks below. Olistostromal rocks may be incorporated into the decollement here. In the mid-arc to inner-arc areas of the SAC, exotic block-bearing mélanges develop in zones of tectonic fragmentation and mixing of accreting ocean plate stratigraphy, in mud diapirs, and along out-of-sequence faults, some of which facilitate uplift of high-pressure rocks and serpentinite-matrix mélanges. Second, after accretion, the sedimentary, tectonic, diapiric, and polygenetic mélange units serve as single block or sheet architectural AUs (or subunits within larger accreted AUs) of the SAC. Diapiric melanges and sedimentary olistostromal mélanges formed in and above SAC fault blocks, respectively, may become incorporated into the SAC during ongoing deformation and become architectural units, as well. Third, melanges serve as post-subduction stress guides that focus shear strain during continuing and post-accretion deformation of SACs, allowing ongoing modification of the SAC during progressive deformation of the orogen. Examples of each type of role reveal the importance of all three processes in the current architecture of outer orogenic belts.  相似文献   

17.
The Divrigi and Kuluncak ophiolitic mélanges are located in central Anatolia in the Tauride ophiolite belt. The stratigraphic sequence in the Divrigi ophiolitic mélange includes, from bottom to top, the Upper Jurassic-Lower Cretaceous Akdag limestone, Upper Cretaceous Çalti ultramafic rocks, and the Curek listwaenite. The Divrigi ophiolitic mélange is intruded by the Late Cretaceous-Eocene Murmano pluton. The above stratigraphic sequence is followed by the Eocene-Paleocene Ekinbasi metasomatite and the Quaternary Kilise Formation.

The oldest sequence of rocks in Kuluncak ophiolitic mélange in the GuvenÇ area is the Karadere serpentine/ultramafic body overlain successively by the Kurtali gabbro, Gundegcikdere radiolarite, the GuvenÇ listwaenites, and the Buldudere Formation. All of these units are Late Cretaceous in age. The Karamagra siderite deposit in the Hekimhan area probably was formed in the Lower Cretaceous at the contact between Çalti ultramafic rocks and the Buldudere Formation. The Kuluncak ophiolitic mélange was intruded by a subvolcanic trachyte in the Late Cretaceous. The Eocene-Paleocene Konukdere metasomatite, the Miocene Yamadag volcanic rocks, and Quaternary slope deposits are late in the stratigraphic sequence in the GuvenÇ area.

The Kuluncak ophiolitic mélange in the Karakuz area is similar to that at GuvenÇ; however, gabbro, radiolarite, and Miocene volcanic rocks are not present. The Miocene is represented by the Ciritbelen Formation at Karakuz and the Karakuz iron deposit is hosted by a Late Cretaceous subvolcanic trachyte.

The rareearth and trace-element concentration of serpentinite in the Divrigi and Kuluncak ophiolitic mélanges indicate that all of the ultramafics and their alteration products were derived from a MORB, which was depleted in certain elements and oxides. The results expressed in this study support the idea that the Divrigi and Kuluncak ophiolitic mélanges within the Tauride ophiolite belt originated from Northern Tauride oceanic lithosphere (Poisson, 1986), instead of a northern branch of Neo-Tethys (Sengor and Yilmaz, 1981).  相似文献   

18.
Abstract: Age of magmatism and tin mineralization in the Khingan‐Okhotsk volcano–plutonic belt, including the Khingan, Badzhal and Komsomolsk tin fields, were reviewed in terms of tectonic history of the continental margin of East Asia. This belt consists mainly of felsic volcanic rocks and granitoids of the reduced type, being free of remarkable geomagnetic anomaly, in contrast with the northern Sikhote‐Alin volcano–plutonic belt dominated by oxidized‐type rocks and gold mineralization. The northern end of the Khingan‐Okhotsk belt near the Sea of Okhotsk, accompanied by positive geomagnetic anomalies, may have been overprinted by magmatism of the Sikhote‐Alin belt. Tin–associated magmatism in the Khingan‐Okhotsk belt extending over 400 km occurred episodically in a short period (9510 Ma) in the middle Cretaceous time, which is coeval with the accretion of the Kiselevka‐Manoma complex, the youngest accretionary wedge in the eastern margin of the Khingan‐Okhotsk accretionary terranes. The episodic magmatism is in contrast with the Cretaceous‐Paleogene long–lasted magmatism in Sikhote–Alin, indicating the two belts are essentially different arcs, rather than juxtaposed arcs derived from a single arc. The tin‐associated magmatism may have been caused by the subduction of a young and hot back‐arc basin, which is inferred from oceanic plate stratigraphy of the coeval accre‐tionary complex and its heavy mineral assemblage of immature volcanic arc provenance. The subduction of the young basin may have resulted in dominance of the reduced‐type felsic magmas due to incorporation of carbonaceous sediments within the accretionary complex near the trench. Subsequently, the back‐arc basin may have been closed by the oblique collision of the accretionary terranes in Sikhote–Alin, which was subjected to the Late Cretaceous to Paleogene magmatism related to another younger subduction system. These processes could have proceeded under transpressional tectonic regime due to oblique subduction of the paleo‐Pacific plates under Eurasian continent.  相似文献   

19.
Long-lived subduction complexes, such as the Franciscan Complex of California, include tectonic contacts that represent exhumed megathrust horizons that collectively accommodated thousands of kilometres of slip. The chaotic nature of mélanges in subduction complexes has spawned proposals that these mélanges form as a result of megathrust displacement. Detailed field and petrographic relationships, however, show that most Franciscan mélanges with exotic blocks formed by submarine landsliding. Field relationships at El Cerrito Quarry in the eastern San Francisco Bay area suggest that subduction slip may have been accommodated between the blueschist facies metagreywacke of the Angel Island nappe above and the prehnite-pumpellyite facies metagreywacke of the Alcatraz nappe below. Although a 100–200 m-thick mélange zone separates the nappes, this mélange is a variably deformed, prehnite-pumpellyite facies sedimentary breccia and conglomerate deposited on the underlying coherent sandstone, so the mélange is part of the lower nappe. A 20–30 m-thick fault zone between the top of the mélange, and the base of the Angel Island nappe displays an inverted metamorphic gradient with jadeite-glaucophane-lawsonite above lawsonite-albite assemblages. This zone has a strong seaward (SW)-vergent shear fabric and hosts ultracataclasite and pseudotachylite. These relationships suggest that significant subduction megathrust displacement at depths of 15–30 km was accommodated within the 20–30 m-thick fault zone. Field studies elsewhere in the Franciscan Complex suggest similar localization of megathrust slip, with some examples lacking mélanges. The narrow megathrust zone at El Cerrito Quarry, its uniform sense-of-shear, and the localization of slip along the contact of, rather than within a mélange, contrast sharply with the predictions of numerical models for subduction channels.  相似文献   

20.
ABSTRACT

Sedimentary serpentinite and related siliciclastic-matrix mélanges in the latest Jurassic to Lower Cretaceous lower Great Valley Group (GVG) forearc basin strata of the California Coast Ranges reach thicknesses of over 1 km and include high-pressure (HP) metamorphic blocks. These units crop out over an area at least 300 km long by 50 km wide. The serpentinite also contains locally abundant blocks of antigorite mylonite. Antigorite mylonite and HP metamorphic blocks were exhumed from depth prior to deposition in the unmetamorphosed GVG, but the antigorite mylonite may be mistaken for metamorphosed serpentinite matrix in localities with limited exposure. These olistostrome horizons can be distinguished from intact slabs of serpentinized peridotite associated with the Coast Range Ophiolite (CRO) or serpentinite mélanges of the Franciscan subduction complex (FC) on the basis of internal sedimentary textures (absent in CRO), mixing/interbedding with unmetamorphosed siliciclastic matrix and blocks (differs from CRO and FC), and preserved basal sedimentary contacts over volcanic rocks of the CRO or shale, sandstone, and conglomerate of the GVG (differs from CRO and FC). Even in the relatively well-characterized Palaeo trench–forearc region of the California Coast Ranges the GVG deposits are difficult to distinguish from similar units in the FC and CRO. In typical orogenic belts that exhibit greater post-subduction disruption, distinguishing forearc basin olistostrome deposits, subduction complex, and opholite mantle sections is much more difficult. Forearc basin olistostromal deposits have probably been misidentified as one of the other trench–forearc lithologic associations. Such errors may lead to erroneous interpretations of the nature of large-scale material and fluid pathways in trench–forearc systems, as well as misinterpretations of tectonic processes associated with HP metamorphism and exhumation of the resultant rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号