首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
循环荷载下饱和岩石的滞后和衰减   总被引:13,自引:0,他引:13       下载免费PDF全文
通过对饱和砂岩和大理岩的循环荷载实验,分析了饱和岩石在循环荷载下的应力-应变滞后回线、瞬时杨氏模量、泊松比的“X”形变化曲线,以及杨氏模量随应变振幅的增加而减少等滞后现象,并分析了施加外力的应变振幅对衰减的影响,认为岩石在循环荷载作用下的衰减与应变振幅成正比,提出的衰减b值反映了岩石在循环荷载作用下衰减的程度. 岩石的衰减和滞后存在密切的关系,通过饱和岩石的宏观行为,探讨了饱和岩石在循环荷载下的滞后和衰减现象的微观机理,认为孔隙流体流动在岩石的滞后和衰减中起着重要作用,岩石内部的颗粒接触粘合和黏滑摩擦可能是孔隙岩石在循环荷载作用下产生滞后和衰减的原因.  相似文献   

2.
This paper presents a semi-analytical solution for one dimensional consolidation problem of inelastic clays under cyclic loading considering the effect of the change of the consolidation coefficient of the soil layer. Due to change of the consolidation coefficient, and time-dependant loading, Terzaghi's theory would not be applicable in cyclic conditions. In this research, a method based on the time variable exchange along with the superimposing rule is employed to overcome these shortcomings. Changes in the consolidation coefficient are applied in the solution by modifying the loading and unloading durations introducing a Virtual Time. Based on the superimposing rule a set of continuous static loads in specified times are used instead of the cyclic load in the transformed time space. Each full cycle of loading is replaced by a pair of static loads with different signs. Based on the Terzaghi's theory the pore-water pressure distribution and the degree of consolidation are calculated for each static load and the results are superimposed. A set of laboratory consolidation tests under cyclic load and numerical analysis are performed in order to verify the presented method. The numerical solution and laboratory tests results showed the accuracy of the presented method.  相似文献   

3.
In order to effectively utilize results from quasi-static cyclic testing on structural components for the earthquake-induced collapse risk quantification of structures, the need exists to establish collapse-consistent loading protocols representing the asymmetric lateral drift demands of structures under low-probability of occurrence earthquakes. This paper summarizes the development of such protocols for experimental testing of steel columns prone to inelastic local buckling. The protocols are fully defined with a deformation- and a force-controlled parameter. They are generally applicable to quantify the capacity and demands of steel columns experiencing constant and variable axial load coupled with lateral drift demands. Through rigorous nonlinear earthquake collapse simulations, it is found that the building height, the column's local slenderness ratio, and ground motion type have the largest influence on the dual-parameter loading protocol indexes. Comprehensive comparisons with measured data from full-scale shake table collapse tests suggest that unlike routinely used symmetric cyclic loading histories, the proposed loading protocol provides sufficient information for modeling strength and stiffness deterioration in steel columns at large inelastic deformations.  相似文献   

4.
Settlements under consecutive series of cyclic loading   总被引:1,自引:0,他引:1  
In this study, consolidation settlements of soft clay caused by cyclic loading and the affecting factors such as number of cycles and stress level were experimentally investigated. A group of samples prepared in slurry consolidometer in the laboratory were tested using cyclic simple shear testing device. Normally consolidated samples were subjected to five consecutive series of cyclic loading and drainage for 60 min were applied between each cyclic loading stages. Cyclic tests were performed with stress controlled two-way sinusoidal wave loading with different stress levels and number of cycles. Frequency of cyclic loading was constant as 0.1 Hz. As a result of this study, it can be concluded that soft clays subjected to undrained cyclic loading and drainage cycles exhibit more resistance against subsequent cyclic shear stresses. The consolidation settlements, pore pressures and shear strains decrease after each stage of cyclic loading.  相似文献   

5.
This paper is concerned with the modelling of the behaviour of steel under cyclic and dynamic loading conditions. After a general discussion regarding the requirements for accurate and efficient modelling in dynamics, two models are described and implemented. The bilinear stress-strain constitutive relationship with kinematic hardening is widely used in many computer codes, hence is used for ‘control’ purposes. The multisurface plasticity model is said to exhibit the important qualities of strain hardening, softening and relaxation to a mean stress. This model is described in detail and notes on model parameter evaluation are given. A number of validation examples are presented, due to the complexity of implementation of the multisurface formulation. This is followed by comparisons between the bilinear response predictions and those of the multisurface model for cyclic and dynamic tests on beam-columns. It is concluded that in the absence of material test data under cyclic loading, the bilinear model provides acceptably accurate response predictions. However, the multisurface model provides a significantly closer fit to experimental results, due to its ability to model a yield plateau and a non-linear strain-hardening regime as well as cyclic degradation. It can also be used for new types of steel where no distinct yield point is observed.  相似文献   

6.
Understanding the impact of prior earthquake damage on residual capacity is important for postearthquake damage assessment of buildings; however, interpretation of such impact is challenging when based on tests using traditional reversed‐cyclic loading protocols. A new loading protocol, consisting of a dynamic earthquake displacement history followed by quasi‐static reversed‐cyclic loading to failure, is presented as an alternative to traditional simulated seismic loading protocols. Data are analyzed from a set of 12 nominally identical ductile reinforced concrete beams that were tested by using variations of this protocol and traditional reversed‐cyclic and monotonic protocols. Differences in the cycle content of the earthquake displacement histories applied to the test specimens allowed for the effects of load history variation below 2.2% drift to be isolated. It is found that such variation had no effect on the beam deformation capacities. The effects of dynamic loading rates are also analyzed and compared against control quasi‐static specimens. Relative strength increases due to dynamic loading are found to be more significant at yield than at ultimate. Dynamic loading rates led to modest reductions in the beam deformation capacities, but the presence of causality between these variables remains uncertain.  相似文献   

7.
A new semi-empirical formula for evaluating the residual strain of soils under earthquake loading is presented in this paper based on the incremental method and the increment model proposed by the authors. When the incident loading is uniform, the results calculated by the new formula are nearly the same as those by the existing formula. For excitation of the random earthquake loading, the results calculated by the new formula are compared to the results obtained by dynamic triaxial tests. The dynamic triaxial tests had been performed considering different seismic waves, confining stresses,consolidation ratios, and types of cohesive soils. The comparison between the calculated and tested results indicate that the presented formula can efficiently and practically describe the time-dependent process of the soil residual strains under actual seismic loads.  相似文献   

8.
借助有限元数值方法模拟不同砂土试样在多向和单向地震荷载输入条件下的动三轴试验,选取覆盖大震、中震、近场、远场及不同土质条件的155组多向地震输入时程对不同砂土试样分别进行单向和多向加载,建立考虑多向地震荷载作用的等效循环周数计算方法,并研究震级、震中距和砂土特性对等效循环周数比的影响。研究表明,震级和震中距对等效循环周数比影响不明显,砂土特性对等效循环周数比的影响具有主导作用,砂土相对密度为45%、60%、80%和100%时,其对应的等效循环周数比均值分别为1.58、1.75、1.93和2.08,相对密度越大,比值越大,结合该比值,可以较好地应用文中提出方法进行多维地震荷载等效循环周数计算。  相似文献   

9.
设计和研制一台大型智能控制压扭多轴加载试验机,形成一个集动静加载、扭剪、常规三轴等功能为一体的多功能土动力试验平台。该试验机具有如下特点:(1)试样尺寸大,高度可达600mm,且可根据试验需求更换大小不同的试样及相应传感器;(2)加载自由度多,可独立施加轴力、扭矩、内压、外压、孔压及相应的位移,实现5个不同物理量的独立控制,从而大大拓宽可施加的应力路径范围;(3)控制智能化,可先将拟进行的应力路径或应变路径写入程序中,试验过程中即可由计算机自动控制。测试结果表明,该试验机的控制精度能够满足土工材料试验的要求。  相似文献   

10.
Nonlinear elastic behavior of fiber-reinforced soil under cyclic loading   总被引:5,自引:0,他引:5  
Experimental investigations and modeling of nonlinear elasticity of fiber-reinforced soil under cyclic loading at small strain are conducted in this paper. The investigations include three aspects. First, cyclic shear tests are conducted using conventional triaxial apparatus. Twenty-seven specimens with three different fiber contents are employed to conduct triaxial cyclic shear tests under different confining pressure and loading repetition. Effects of geofiber, confining pressure and loading repetition on elastic shear modulus of reinforced soil are studied and analyzed. Second, a hyperbolic function is introduced to describe the nonlinear stress–strain skeletal curve under cyclic loading. Nonlinear elastic modulus is expressed as a function of shear strain and two variables A and B that are related to the initial tangential modulus and ultimate cyclic loading stress, respectively. In the present paper, variables A and B both are further assumed to be functions of geofiber content, confining pressure and loading repetition. Finally, eight constitutive coefficients of the nonlinear elastic model are calibrated using stress–strain curves from cyclic triaxial shear tests. The calibration of parameters is conducted using the technique of the linear regression for multiple variables. Impacts and effects of geofiber, confining pressure and loading repetitions on soil nonlinear elastic behavior are discussed.  相似文献   

11.
The energy dissipation capacity of a structure is a very important index that indicates the structural performance in energy‐based seismic design. This index depends greatly on the structural components that form the whole system. Owing to the wide use of the strong‐column weak‐beam strength hierarchy where steel beams dissipate the majority of earthquake input energy to the structures, it is necessary to evaluate the energy dissipation capacity of the beams. Under cyclic loadings such as seismic effects, the damage of the beams accumulates. Therefore, loading history is known to be the most pivotal factor influencing the deformation capacity and energy dissipation capacity of the beams. Seismic loadings with significantly different characteristics are applied to structural beams during different types of earthquakes and there is no unique appropriate loading protocol that can represent all types of seismic loadings. This paper focuses on the effects of various loading histories on the deformation capacity and energy dissipation capacity of the beams. Cyclic loading tests of steel beams were performed. In addition, some experimental results from published tests were also collected to form a database. This database was used to evaluate the energy dissipation capacity of steel beams suffering from ductile fracture under various loading histories. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
本文将边界层模型用于吸力桩(筒型基础)这种特殊的桩体,对位于渤海湾锦州地区的JZ9—3筒型基础系缆平台冰力作用下的土压力进行了计算分析,并将计算结果与实测数据进行了对比。结果表明计算值基本上反映了基础土-筒相互作用的应力状态,边界层模型可以有效地分析吸力桩-土相互作用问题。  相似文献   

13.
Evaluation of shear strength of rock joints subjected to cyclic loading   总被引:7,自引:0,他引:7  
Variation of the shear strength of rock joints due to cyclic loadings is studied in the present paper. Identical joint surfaces were prepared using a developed moulding method with special mortar and shear tests were performed on these samples under both static and cyclic loading conditions. Different levels of shear displacement were applied on the samples to study joint behaviour before and during considerable relative shear displacement. It was found that the shear strength of joints is related to rate of displacement (shearing velocity), number of loading cycles and stress amplitude. Finally, based on the experimental results, mathematical models were developed for evaluation of shear strength in cyclic loading conditions.  相似文献   

14.
The aim of this work is to model beam‐column behavior in a computationally effective manner, revealing reliably the overall response of reinforced concrete members subjected to intensive seismic loading. In this respect, plasticity and damage are considered in the predominant longitudinal direction, allowing for fiber finite element modeling, while in addition the effect of inelastic buckling of longitudinal rebars, which becomes essential at later stages of intensive cyclic loading, is incorporated. Α smooth plasticity‐damage model is developed for concrete, accounting for unilateral compressive and tensile behavior, nonlinear unloading and crack closure phenomena. This is used to address concrete core crushing and spalling, which triggers the inelastic buckling of longitudinal rebars. For this reason, a uniaxial local stress‐strain constitutive relation for steel rebars is developed, which is based on a combined nonlinear kinematic and isotropic hardening law. The proposed constitutive model is validated on the basis of existing experimental data and the formulation of the buckling model for a single rebar is developed. The cross section of rebar is discretized into fibers, each one following the derived stress‐strain uniaxial law. The buckling curve is determined analytically, while equilibrium is imposed at the deformed configuration. The proposed models for concrete and rebars are embedded into a properly adjusted fiber beam‐column element of reinforced concrete members and the proposed formulation is verified with existing experimental data under intensive cyclic loading.  相似文献   

15.
The seismic behavior of steel bridge piers partially filled with concrete under actual earthquake conditions was investigated by using 20 square section specimens subjected to static cyclic loading tests and single‐directional and bidirectional hybrid loading tests. Acceleration records of two horizontal NS and EW directional components for hard (GT1), medium (GT2), and soft grounds (GT3), obtained during the 1995 Kobe earthquake, were adopted in dynamic tests. Experimental results clearly showed that maximum and residual displacements under actual earthquake conditions cannot be accurately estimated by conventional single‐directional loading tests, especially for GT2 and GT3. A modified admissible displacement was proposed on the basis of bidirectional loading test results. The concrete fill can effectively improve the seismic resistance performance if the concrete inside the steel bridge piers is sufficiently high in quantity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
在已完成的包括16个构件的等位移循环加载钢筋混凝土柱的系列试验中,通过在其中3根柱的塑性铰区沿混凝土受力方向安设位移计,较准确测定了混凝土测试标距内的平均应变在一个加载循环内的变化规律及其随周数增长的变化规律;发现了单周最大压应变随周数的增长而持续增大,单周最大名义拉应变随周数增长而持续减小的重要现象;并与柱顶水平力-水平位移滞回规律实测结果相对应,结合截面受力特征对所得单周和多周应变变化规律的成因作了分析。  相似文献   

17.
通过14根铰支焊接工字形支撑在不同特征的循环轴向位移荷载下的低周疲劳试验,研究了循环轴向位移荷载的位移幅值、平均位移幅值及加载次序等因素对钢支撑低周疲劳及耗能性能的影响。研究发现,对称循环荷载中幅值越小,支撑翼缘局部屈曲发展越晚,其耗能及承载力退化也越平缓。文中提出了支撑在幅值6δ≤Δδ≤12δy的对称循环荷载下的疲劳寿命经验公式。试验表明,循环荷载的位移幅值是支撑疲劳损伤及耗能退化的最主要影响因素,过载峰效应及适当的平均压位移幅值改善了钢支撑低周疲劳及耗能性能。  相似文献   

18.
Lead rubber bearings, which have been extensively applied in many seismic isolation designs for buildings, infrastructures, and facilities worldwide, were tested under unilateral reversal loading as well as nonproportional plane loading including circular, figure-eight, and square orbits in this study. The test results indicate that unlike the unilateral hysteretic behavior, the bilateral one of lead rubber bearings is too complicated to be characterized adequately by a simplified bilinear hysteretic model. It is mainly attributed to the bilateral coupling effect, which can be clearly observed from the abnormal deformation of the mesh pattern drawn on the rubber cover during the tests. In addition, after being subjected to nonproportional plane loading, the tested bearings reveal visible permanent twisting deformation. The profiles of the cut bearings present the fracture of the inside lead plugs. Even so, the further unilateral reversal loading test results prove that the fracture might not affect the whole hysteretic behavior and mechanical properties very much. The applicability, robustness, and generalization of adopting three previously developed analytical models for describing the coupled bilateral hysteretic behavior of lead rubber bearings are further demonstrated by comparing their predictions with the nonproportional plane loading test results. Although the coefficients are identified from unilateral reversal loading tests, the three analytical models can still have an acceptable prediction capability.  相似文献   

19.
针对多点动态加载系统中多路液压伺服系统特性不一致造成的响应不同步问题,提出一种基于W idrow-Hoff学习算法的液压伺服系统协调加载控制策略,通过迅速地调整伺服系统输入正弦信号的幅值和相位,使多路系统的响应在短时间内与设定信号相一致并协调动作。将此算法应用于实际加载系统,试验证明能够有效地控制多路液压伺服系统的协调动作,从而达到多点协调加载的目的。  相似文献   

20.
Nine large‐scale beam specimens were constructed. Of which, one was used as the control, whereas the other eight ones were divided into four sets. Each set had two specimens and was subjected to accelerated corrosion using an imposed current for the same time interval. Following the corrosion, a specimen in each set was tested using cyclic loading to examine the seismic performance, whereas the other one was demolished to examine the extent of corrosion. Cyclic loading results indicated that with an increasing corrosion level, the ultimate drift, ductility, plastic rotation capacity, and energy dissipation of the beams initially increased and later decreased. The failure mode switched from flexural failure, largely owing to buckling of the longitudinal reinforcement to flexural‐shear failure, which is mainly caused by fracturing of the transverse reinforcement. Corrosion increased shear deformation and the spread of plasticity of the plastic hinge region. The residual flexural strength, as estimated by an empirical equation based on the maximum pit depth in the longitudinal reinforcement, closely corresponds to experimental values. Furthermore, the residual shear strength estimated based on the minimum reduced cross‐sectional area of transverse reinforcement correlates better with the experimental observations than that based on the weight loss. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号